3,214 research outputs found

    Mary H. Gibbon: teamwork of the heart.

    Get PDF
    Mary Maly Hopkinson Gibbon was born on September 25, 1903, to an affluent New England family who encouraged her to embrace her intelligence and to follow that by which she was intrigued. In doing this, Maly pursued work in scientific research, where she ultimately met her first husband, Dr. John ‘‘Jack’’ H. Gibbon. Jack and Maly were partners in every sense of the word. Their collaboration, both within and beyond the walls of the research laboratory, made it possible for the Gibbon dream of the heart–lung machine to be realized

    The international framework for school health promotion: Supporting young people through and after the COVID-19 pandemic

    Get PDF
    BACKGROUND: The worldwide COVID-19 government restrictions imposed on young people to limit virus spread have precipitated a growing and long-term educational and health crisis. CONTRIBUTIONS TO THE THEORY: This novel study used Sen\u27s Capabilities Approach as a theoretical framework to examine the current health and educational impacts of COVID-19 on youth, referencing emerging literature. The objective was to inform the design of an internationally relevant framework for school health promotion to support young people through and after the COVID-19 pandemic. Mapping of existing health resources, internal/external conversion factors and capabilities were used to identify classroom, school and system level strategies that will enable young people to flourish. Four central enablers were identified and used in the design of the International Framework for School Health Promotion (IFSHP). IMPLICATIONS FOR SCHOOL HEALTH POLICY, PRACTICE AND EQUITY: The IFSHP can be used by educational institutions, school leaders and teachers to innovate existing health promotion programs, policies and practices to support young people through and after the COVID-19 pandemic. CONCLUSIONS: School systems, schools and teachers are encouraged to utilize the IFSHP to review and innovate existing school health programs to ensure they meet the increased physical and mental health needs of young people

    Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes

    Get PDF
    Structural variants (SVs) are an important source of human genome diversity, but their functional effects are poorly understood. We mapped 61,668 SVs in 613 individuals from the GTEx project and measured their effects on gene expression. We estimate that common SVs are causal at 2.66% of eQTLs, a 10.5-fold enrichment relative to their abundance in the genome. Duplications and deletions were the most impactful variant types, whereas the contribution of mobile element insertions was small (0.12% of eQTLs, 1.9-fold enriched). Multitissue analysis of eQTLs revealed that gene-altering SVs show more constitutive effects than other variant types, with 62.09% of coding SV-eQTLs active in all tissues with eQTL activity compared with 23.08% of coding SNV- and indel-eQTLs. Noncoding SVs, SNVs and indels show broadly similar patterns. We also identified 539 rare SVs associated with nearby gene expression outliers. Of these, 62.34% are noncoding SVs that affect gene expression but have modest enrichment at regulatory elements, showing that rare noncoding SVs are a major source of gene expression differences but remain difficult to predict from current annotations. Both common and rare SVs often affect the expression of multiple genes: SV-eQTLs affect an average of 1.82 nearby genes, whereas SNV- and indel-eQTLs affect an average of 1.09 genes, and 21.34% of rare expression-altering SVs show effects on two to nine different genes. We also observe significant effects on rare gene expression changes extending 1 Mb from the SV. This provides a mechanism by which individual SVs may have strong or pleiotropic effects on phenotypic variation

    Adventures in data citation: sorghum genome data exemplifies the new gold standard

    Get PDF
    Scientific progress is driven by the availability of information, which makes it essential that data be broadly, easily and rapidly accessible to researchers in every field. In addition to being good scientific practice, provision of supporting data in a convenient way increases experimental transparency and improves research efficiency by reducing unnecessary duplication of experiments. There are, however, serious constraints that limit extensive data dissemination. One such constraint is that, despite providing a major foundation of data to the advantage of entire community, data producers rarely receive the credit they deserve for the substantial amount of time and effort they spend creating these resources. In this regard, a formal system that provides recognition for data producers would serve to incentivize them to share more of their data. The process of data citation, in which the data themselves are cited and referenced in journal articles as persistently identifiable bibliographic entities, is a potential way to properly acknowledge data output. The recent publication of several sorghum genomes in Genome Biology is a notable first example of good data citation practice in the field of genomics and demonstrates the practicalities and formatting required for doing so. It also illustrates how effective use of persistent identifiers can augment the submission of data to the current standard scientific repositories

    Dynamic association between perfusion and white matter integrity across time since injury in Veterans with history of TBI.

    Get PDF
    ObjectiveCerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI.Methods37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI.ResultsRegression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum (p < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI.ConclusionsOur results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury

    The Infrared Properties of Submillimeter Galaxies: Clues From Ultra-Deep 70 Micron Imaging

    Get PDF
    We present 70 micron properties of submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey (GOODS) North field. Out of thirty submillimeter galaxies (S_850 > 2 mJy) in the central GOODS-N region, we find two with secure 70 micron detections. These are the first 70 micron detections of SMGs. One of the matched SMGs is at z ~ 0.5 and has S_70/S_850 and S_70/S_24 ratios consistent with a cool galaxy. The second SMG (z = 1.2) has infrared-submm colors which indicate it is more actively forming stars. We examine the average 70 micron properties of the SMGs by performing a stacking analysis, which also allows us to estimate that S_850 > 2 mJy SMGs contribute 9 +- 3% of the 70 micron background light. The S_850/S_70 colors of the SMG population as a whole is best fit by cool galaxies, and because of the redshifting effects these constraints are mainly on the lower z sub-sample. We fit Spectral Energy Distributions (SEDs) to the far-infrared data points of the two detected SMGs and the average low redshift SMG (z_{median}= 1.4). We find that the average low-z SMG has a cooler dust temperature than local ultraluminous infrared galaxies (ULIRGs) of similar luminosity and an SED which is best fit by scaled up versions of normal spiral galaxies. The average low-z SMG is found to have a typical dust temperature T = 21 -- 33 K and infrared luminosity L_{8-1000 micron} = 8.0 \times 10^11 L_sun. We estimate the AGN contribution to the total infrared luminosity of low-z SMGs is less than 23%.Comment: Accepted by ApJ. 14 pages, 6 figures. Minor revisions 20th Dec 200

    In-situ phase diagram determination of the HfO2-Ta2O5 binary up to 3000˚C

    Get PDF
    Ceramic equilibrium phase diagrams have proven to be difficult to produce for materials above 1500 ˚C. We demonstrate that in-situ X-ray diffraction on laser heated levitated samples can be used to elucidate phase fields. In these experiments, solid spherical samples are suspended and rotated by a gas stream through a conical nozzle levitator, heated by a 400 W CO2 laser at Argonne National Labs beamline 6-ID-D. Please click on the link below for the full content
    • 

    corecore