11 research outputs found

    Species Cross-Reactivity of Antibodies Used to Treat Ophthalmic Conditions

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. https://creativecommons.org/licenses/by-nc-nd/4.0/PURPOSE: The species cross-reactivity of the monoclonal antibodies infliximab, bevacizumab, and an anti-VEGF-B antibody, 2H10, in humans and rodents was determined. METHODS: The binding of infliximab to human, mouse, and rat TNF-α, of bevacizumab to human, mouse, and rat VEGF-A, and of the 2H10 antibody to human, mouse, and rat VEGF-B was evaluated by ELISA. The sequence of human, mouse, and rat TNF-α and VEGF-A at the binding sites for infliximab and bevacizumab were compared. RESULTS: Infliximab bound to human TNF-α, but no binding to mouse or rat TNF-α was detected between 10 pg/mL and 10 μg/ml. Sequence comparison of the binding site revealed four changes in mouse and five in rat TNF-α compared with human. Bevacizumab bound strongly to human VEGF-A, but showed 5-log weaker binding to both mouse and rat VEGF-A. There was a single amino acid substitution in mouse and rat VEGF-A at the bevacizumab binding site. The 2H10 antibody displayed a similar binding profile to human, mouse, and rat VEGF-B. CONCLUSIONS: The species cross-reactivity of monoclonal antibodies should be determined prior to their use in preclinical animal models. The 2H10 antibody binds to human, mouse, and rat VEGF-B making it suitable for testing in rodent models of human diseas

    An Anti–VEGF-B Antibody Fragment Induces Regression of Pre-Existing Blood Vessels in the Rat Cornea

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Purpose: We tested the ability of an antibody fragment with specificity for vascular endothelial growth factor-B (VEGF-B) to regress nascent and established corneal blood vessels in the rat. Methods: A single chain variable antibody fragment (scFv) with specificity for VEGF-B was engineered from the 2H10 hybridoma. Binding to rat, mouse, and human VEGF-B was confirmed by surface plasmon resonance. Activity of the anti–VEGF-B scFv on developing and established corneal blood vessels was assessed following unilateral superficial cautery in male and female outbred Sprague Dawley rats. Groups (untreated, control scFv-treated, or anti–VEGF-B scFv-treated) comprised 6 to 22 rats. Treatment consisted of 5 μL scFv, 1 mg/mL, applied topically five times per day for 14 days, or two subconjunctival injections, 50 μg scFv each, applied 7 days apart, or combined topical and subconjunctival treatment. Corneal vessel area was quantified on hematoxylin-stained corneal flat-mounts, and groups were compared using the Mann-Whitney U test, with post hoc Bonferroni correction. Immunohistochemistry for cleaved caspase-3 was performed. Results: Topical anti–VEGF-B scFv therapy alone did not regress corneal blood vessels significantly (P > 0.05). Subconjunctival injection and combined treatment regressed 14-day established corneal blood vessels (25% reduction in vessel area [P = 0.04] and 37% reduction in vessel area [P < 0.001], respectively, compared to results in untreated controls). Cleaved caspase-3 was identified in vascular endothelial cells of anti–VEGF-B scFv-treated corneas. In scFv-treated rats, corneal endothelial cell function was maintained to 12 weeks after treatment and a normal blink reflex was present. Conclusions: The anti–VEGF-B scFv significantly regressed established but not developing corneal blood vessels in rats

    Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Get PDF
    SummaryInterleukin-3 (IL-3) is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα) in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD), a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade

    Phenotype-specific recombinant haptoglobin polymers co-expressed with C1r-like protein as optimized hemoglobin-binding therapeutics

    Get PDF
    BACKGROUND: Preclinical studies have evaluated haptoglobin (Hp) polymers from pooled human plasma as a therapeutic protein to attenuate toxic effects of cell-free hemoglobin (Hb). Proof of concept studies have demonstrated efficacy of Hp in hemolysis associated with transfusion and sickle cell anemia. However, phenotype-specific Hp products might be desirable to exploit phenotype specific activities of Hp 1-1 versus Hp 2-2, offering opportunities for recombinant therapeutics. Prohaptoglobin (proHp) is the primary translation product of the Hp mRNA. ProHp is proteolytically cleaved by complement C1r subcomponent-like protein (C1r-LP) in the endoplasmic reticulum. Two main allelic Hp variants, HP1 and HP2 exist. The larger HP2 is considered to be the ancestor variant of all human Hp alleles and is characterized by an α2-chain, which contains an extra cysteine residue that pairs with additional α-chains generating multimers with molecular weights of 200-900 kDa. The two human HP1 alleles (HP1F and HP1S) differ by a two-amino-acid substitution polymorphism within the α-chain and are derived from HP2 by recurring exon deletions. RESULTS: In the present study, we describe a process for the production of recombinant phenotype specific Hp polymers in mammalian FS293F cells. This approach demonstrates that efficient expression of mature and fully functional protein products requires co-expression of active C1r-LP. The functional characterization of our proteins, which included monomer/polymer distribution, binding affinities as well as NO-sparing and antioxidant functions, demonstrated that C1r-LP-processed recombinant Hp demonstrates equal protective functions as plasma derived Hp in vitro as well as in animal studies. CONCLUSIONS: We present a recombinant production process for fully functional phenotype-specific Hp therapeutics. The proposed process could accelerate the development of Hb scavengers to treat patients with cell-free Hb associated disease states, such as sickle cell disease and other hemolytic conditions

    An optimized hepatitis C virus E2 glycoprotein core adopts a functional homodimer that efficiently blocks virus entry

    No full text
    The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies in vivo and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design. A high-resolution structural definition of the intact HCV envelope glycoprotein complex containing E1 and E2 remains to be elucidated, while crystallographic structures of a recombinant E2 ectodomain failed to resolve HVR1, HVR2, and a major neutralization determinant adjacent to HVR1. To obtain further information on E2, we characterized the role of all three variable regions in E2 ectodomain folding and function in the context of a recombinant ectodomain fragment (rE2). We report that removal of the variable regions accelerates binding to the major host cell receptor CD81 and that simultaneous deletion of HVR2 and the igVR is required to maintain wild-type CD81-binding characteristics. The removal of the variable regions also rescued the ability of rE2 to form a functional homodimer. We propose that the rE2 core provides novel insights into the role of the variable motifs in the higher-order assembly of the E2 ectodomain and may have implications for E1E2 structure on the virion surface. IMPORTANCE Hepatitis C virus (HCV) infection affects ∼2% of the population globally, and no vaccine is available. HCV is a highly variable virus, and understanding the presentation of key antigenic sites at the virion surface is important for the design of a universal vaccine. This study investigates the role of three surface-exposed variable regions in E2 glycoprotein folding and function in the context of a recombinant soluble ectodomain. Our data demonstrate the variable motifs modulate binding of the E2 ectodomain to the major host cell receptor CD81 and have an impact on the formation of an E2 homodimer with high-affinity binding to CD81

    Endogenous IL-11 Signaling Is Essential in Th2- and IL-13–Induced Inflammation and Mucus Production

    No full text
    IL-11 and IL-11 receptor (R)α are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Rα, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Rα–null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVA-sensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Rα. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13–overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung

    Additional file 1: of Phenotype-specific recombinant haptoglobin polymers co-expressed with C1r-like protein as optimized hemoglobin-binding therapeutics

    No full text
    Figure S1. Chromatogram overlay of 2AB labelled N-Glycans released from recombinant (blue) and plamsa-derived (red) Hp variants with PNGase F. Separation was on a Dionex GlycanPac AXH-1, 1.9 Îźm, 2.1 x 150 mm column using an acetonitrile / 50mM ammonium formate gradient with fluorescence detection. Table S1. Peak area by charge-group retention window of 2-AB N-glycans for recombinant human haptoglobin variants and plasma-derived haptoglobin expressed as a percentage of total glycan peak area. (PDF 155 kb
    corecore