61 research outputs found

    Deconstructing Tectonics: Ten Animated Explorations

    Full text link
    The configuration of continents and oceans of our tectonically active planet is ever changing. Using new, high‐resolution paleogeographic base maps, we created a set of animations that examine key elements of plate tectonics. These time‐ and space‐based paleoglobe reconstructions illustrate continental rifting, continental breakup, ocean ridges and fracture zones, hot spot tracks, arc‐backarc systems, continental collision, terrane accretion, opening‐closing of ocean basins, supercontinent formation, plate velocities, and future Earth. Each animation is supported by a narrative that offers a brief topical overview, some observations to guide a user’s exploration, and key references that formulated the main ideas and concepts that became the foundations of modern plate tectonics.Key PointsFundamentals of plate tectonics are explored with paleogeographyShort animations and supporting write‐ups illustrate key processes and properties of tectonicsPresenting plate reconstructions from Cambrian to Today, and a permissible future EarthPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163371/2/ess2650.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163371/1/ess2650_am.pd

    Paleomagnetism of the Upper Silurian and Lower Devonian carbonates of New York State: evidence for secondary magnetizations residing in magnetite

    Full text link
    Paleomagnetic directions for the Upper Silurian and Lower Devonian carbonates of the Helderberg escarpment (New York State) differ from expected Late Silurian and Early Devonian directions for cratonic North America. The mean direction (D = 165[deg], I = -10[deg]; paleopole at 50[deg]N 129[deg]E) is similar to Late Carboniferous and Early Permian results. Negative fold tests, and a lack of reversals, suggest that the magnetization is secondary. However, low coercivities, low blocking temperatures, the thermomagnetic curves (TC near 570[deg]C) and the acquisition of isothermal remanent magnetizations all suggest that the remanence is carried by magnetite. If a detrital origin of these magnetites is assumed, the secondary nature of the remanence would argue for thermal resetting as a result of deep burial of the rocks. However, no evidence for such thermal resetting is seen in the alteration of conodonts. More likely perhaps is a chemical or thermochemical origin of the remanence; this would require the magnetites to be authigenic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23790/1/0000028.pd

    Long-term Phanerozoic global mean sea level: Insights from strontium isotope variations and estimates of continental glaciation

    Get PDF
    Global mean sea level is a key component within the fields of climate and oceanographic modelling in the Anthropocene. Hence, an improved understanding of eustatic sea level in deep time aids in our understanding of Earth's paleoclimate and may help predict future climatological and sea level changes. However, long-term eustatic sea level reconstructions are hampered because of ambiguity in stratigraphic interpretations of the rock record and limitations in plate tectonic modelling. Hence the amplitude and timescales of Phanerozoic eustasy remains poorly constrained. A novel, independent method from stratigraphic or plate modelling methods, based on estimating the effect of plate tectonics (i.e., mid-ocean ridge spreading) from the 87Sr/86Sr record led to a long-term eustatic sea level curve, but did not include glacio-eustatic drivers. Here, we incorporate changes in sea level resulting from variations in seawater volume from continental glaciations at time steps of 1 Myr. Based on a recent compilation of global average paleotemperature derived from δ18O data, paleo-Köppen zones and paleogeographic reconstructions, we estimate ice distribution on land and continental shelf margins. Ice thickness is calibrated with a recent paleoclimate model for the late Cenozoic icehouse, yielding an average ∼1.4 km thickness for land ice, ultimately providing global ice volume estimates. Eustatic sea level variations associated with long-term glaciations (>1 Myr) reach up to ∼90 m, similar to, and is at times dominant in amplitude over plate tectonic-derived eustasy. We superimpose the long-term sea level effects of land ice on the plate tectonically driven sea level record. This results in a Tectono-Glacio-Eustatic (TGE) curvefor which we describe the main long-term (>50 Myr) and residual trends in detail

    Amber and the Cretaceous Resinous Interval

    Get PDF
    Amber is fossilized resin that preserves biological remains in exceptional detail, study of which has revolutionized understanding of past terrestrial organisms and habitats from the Early Cretaceous to the present day. Cretaceous amber outcrops are more abundant in the Northern Hemisphere and during an interval of about 54 million years, from the Barremian to the Campanian. The extensive resin production that generated this remarkable amber record may be attributed to the biology of coniferous resin producers, the growth of resiniferous forests in proximity to transitional sedimentary environments, and the dynamics of climate during the Cretaceous. Here we discuss the set of interrelated abiotic and biotic factors potentially involved in resin production during that time. We name this period of mass resin production by conifers during the late Mesozoic, fundamental as an archive of terrestrial life, the `Cretaceous Resinous Interval (CREI).This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades [research agreement CRE CGL2017-84419 AEI/FEDER, UE] and by the Consejería de Industria, Turismo, Innovación, Transporte y Comercio of the Gobierno de Cantabria through the public enterprise EL SOPLAO S.L. [research agreement #20963 with University of Barcelona and research contract Ref. VAPC 20225428 to CN-IGME CSIC, both 2022–2025]; the Conselho Nacional de Pesquisa (Brazil) [research grand PQ 304529/19–2]; National Geographic Global Exploration Fund Northern Europa [research agreement GEFNE 127-14]; Deutsche Forschungsgemeinschaft (DFG) [research agreement SO 894/6-1]; VolkswagenStiftung [research agreement 90946]; the Secretary of Universities and Research (Government of Catalonia) and by the Horizon 2020 program of research and innovation of the European Union under the Marie-Curie [research contract no. 801370, Beatriu de Pinós]; the Secretary of Universities and Research (Government of Catalonia) and the European Social Fund [research contract 2021FI_B2 00003]; this work is a contribution to the grant RYC2021-032907-I, funded by the MCIN/AEI/10.13039/501100011033 and by the European Union «NextGenerationEU»/PRTR; and the National Agency for Research and Development (ANID) Scholarship Program [BECAS CHILE 2020-Folio 72210321].Abstract Keywords 1. Introduction 2. Definition of the Cretaceous Resinous Interval 3. Conditional factors on resin production and preservation 3.1. Abiotic factors 3.1.1. Atmospheric gas composition, temperature, and wildfires 3.1.2. Volcanism and changes in sea level 3.1.3. Oceanic physicochemical properties and hurricanes 3.1.4. Climatic overview throughout the CREI 3.2. Biotic factors 4. Present limitations and future directions 5. Conclusions Funding Author contributions Declaration of Competing Interest Acknowledgements Appendix A. Supplementary data Data availability Reference

    Paleomap Project

    No full text
    The PALEOMAP Project illustrates the plate tectonic development of the ocean basins and continents, as well as the changing distribution of land and sea during the past 1100 million years. The reconstruction of paleoclimates is also discussed. Maps are viewed as animations where the time component can be user-manipulated. Included are a variety of background materials which supplement the animations
    corecore