58 research outputs found

    Editorial for the Special Issue “Microplastics in Aquatic Environments: Occurrence, Distribution and Effects”

    Get PDF
    The large production and widespread daily consumption of plastic materials—which began in the last century—together with the often-inadequate collection and recycling systems, have made plastics and, consequently, microplastics (MPs) ubiquitous pollutants [...

    Chemical leaching from polyethylene mulching films to soil in strawberry farming

    Get PDF
    Mulching is a widely practiced agricultural technique able to boost crop productivity and to reduce weed growth and water evaporation. One of the most common materials used for mulching is polyethylene. Polyethylene films are known to contain phthalates, plasticizers recognized as endocrine disruptors, thus able to endanger the hormonal system. Only few data exist on the possible transfer of plasticizers from polyethylene mulching films to agricultural soil, especially in Europe, or on the potential implications for the environment and human health. In this study, we analyzed the occurrence of plasticizers such as phthalates and acetyl tributyl citrate from polyethylene mulching films and soil samples collected from strawberry fields where polyethylene films have been used. The samples were analyzed with a gas chromatograph-mass spectrometer and the results indicated that the soil exposed to polyethylene mulches contained a significantly higher concentration, compared to the control soil, of some of the most common plasticizers, including dibuthyl phthalate, benzylbutyl phthalate and acetyl tributyl citrate. These outcomes highlight the need to carry out further research to understand the potential risks that mulching practices can cause for the environment and human health.Peer reviewe

    Microplastics Exposure Causes Negligible Effects on the Oxidative Response Enzymes Glutathione Reductase and Peroxidase in the Oligochaete Tubifex tubifex

    Get PDF
    Microplastics (MPs) are emerging pollutants, which are considered ubiquitous in aquatic ecosystems. The effects of MPs on aquatic biota are still poorly understood, and consequently, there is a need to understand the impacts that MPs may pose to organisms. In the present study, Tubifex tubifex, a freshwater oligochaete commonly used as a bioindicator of the aquatic environment, was exposed to fluorescent polyethylene microspheres (up to 10 µm in size) to test whether the oxidative stress status was affected. The mortality rate of T. tubifex, as well as the activities of the oxidative stress status biomarker enzymes glutathione reductase and peroxidase, were assessed. In terms of oxidative stress, no significant differences between the exposure organisms and the corresponding controls were detected. Even though the data suggest that polyethylene MPs and the selected concentrations did not pose a critical risk to T. tubifex, the previously reported tolerance of T. tubifex to environmental pollution should be taken into account and thus MPs as aquatic pollutants could still represent a threat to more sensitive oligochetes

    Microplastics Exposure Causes Negligible Effects on the Oxidative Response Enzymes Glutathione Reductase and Peroxidase in the Oligochaete Tubifex tubifex

    Get PDF
    Microplastics (MPs) are emerging pollutants, which are considered ubiquitous in aquatic ecosystems. The effects of MPs on aquatic biota are still poorly understood, and consequently, there is a need to understand the impacts that MPs may pose to organisms. In the present study, Tubifex tubifex, a freshwater oligochaete commonly used as a bioindicator of the aquatic environment, was exposed to fluorescent polyethylene microspheres (up to 10 µm in size) to test whether the oxidative stress status was affected. The mortality rate of T. tubifex, as well as the activities of the oxidative stress status biomarker enzymes glutathione reductase and peroxidase, were assessed. In terms of oxidative stress, no significant differences between the exposure organisms and the corresponding controls were detected. Even though the data suggest that polyethylene MPs and the selected concentrations did not pose a critical risk to T. tubifex, the previously reported tolerance of T. tubifex to environmental pollution should be taken into account and thus MPs as aquatic pollutants could still represent a threat to more sensitive oligochetes

    The ability of selected filter materials in removing nutrients, metals, and microplastics from stormwater in biofilter structures

    Get PDF
    Creative solutions to manage stormwater include ecologically based designs, such as biofilter structures. A laboratory experiment was established to study the ability of biofilters to remove nutrients, metals, total suspended solids (TSS), and total organic C originating from roadside stormwater as melted snow. Special attention was paid to the removal of P. In addition, the fate of microplastics (MPs) in the biofilters was followed. The materials selected for biofilters were (a) crushed light-expanded clay aggregates without biochar or amended with biochar, (b) Filtralite P clay aggregates, (c) crushed concrete, or (d) filter sand. A layer to support grass growth was placed above these materials. Stormwater was rich in TSS with associated P and metals, which were substantially retained by all biofilters. Filtralite and concrete had almost 100% P removal, but the high pH had adverse effects on plants. Light-expanded clay aggregates had lower retention of P, and, when mixed with biochar (30% v/v), the leaching of P increased and N retention was improved. None of the materials was ideal for treating both nutrients and metals, but sand was generally best. Vegetation improved N retention and stormwater infiltration. Plant roots formed preferential pathways for water and associated substances, evidenced by the accumulation of MPs along root channels. No MPs were found in discharge. Given the high loading of suspended solids and associated contaminants in snowmelt from traffic areas and their efficient retention in biofiltration, results of this study suggest the implementation of such stormwater management solutions along road verges.Peer reviewe

    Hazardous contaminants in plastics contained in compost and agricultural soil

    Get PDF
    Macro-, meso-and microplastic (MAP, MEP, MP) occurrence in compost is an environmental issue whose extent and effects are not yet understood. Here, we studied the occurrence of MAPs, MEPs and MPs in compost samples, and the transfer of hazardous contaminants from plastics to compost and soil. MAPs/MEPs and MPs concentrations in compost were 6.5 g/kg and 6.6 +/- 1.5 pieces/kg; from common recommendations for compost application, we estimated similar to 4-23 x 10(7) pieces MPs and 4-29 x 10(4) g MAPs/MEPs ha(-1) per year ending into agricultural soils fertilized with such compost. Regarding contaminants, bis(ethylhexyl) phthalate, acetyl tributyl citrate, dodecane and nonanal were extracted in higher concentrations from plastics and plastic-contaminated compost than from compost where MAPs/MEPs had been removed prior to extraction and analysis. However, some contaminants were present even after MAPs/MEPs removal, ascribable to short-and long-term release by MAPs/MEPs, and to the presence of MPs. DEHP concentration was higher in soils where compost was applied than in fields where it was not used. These results, along with estimations of plastic load to soil from the use of compost, show that compost application is a source of plastic pollution into agricultural fields, and that plastic might transfer hazardous contaminants to soil.Peer reviewe

    Occurrence of Natural and Synthetic Micro-Fibers in the Mediterranean Sea: A Review

    Get PDF
    Among microplastics (MPs), fibers are one of the most abundant shapes encountered in the aquatic environment. Growing attention is being focused on this typology of particles since they are considered an important form of marine contamination. Information about microfibers distribution in the Mediterranean Sea is still limited and the increasing evidence of the high amount of fibers in the aquatic environment should lead to a different classification from MPs which, by definition, are composed only of synthetic materials and not natural. In the past, cellulosic fibers (natural and regenerated) have been likely included in the synthetic realm by hundreds of studies, inflating “micro-plastic” counts in both environmental matrices and organisms. Comparisons are often hampered because many of the available studies have explicitly excluded the micro-fibers (MFs) content due, for example, to methodological problems. Considering the abundance of micro-fibers in the environment, a chemical composition analysis is fundamental for toxicological assessments. Overall, the results of this review work provide the basis to monitor and mitigate the impacts of microfiber pollution on the sea ecosystems in the Mediterranean Sea, which can be used to investigate other basins of the world for future risk assessment

    Occurrence of Natural and Synthetic Micro-Fibers in the Mediterranean Sea: A Review

    Get PDF
    Among microplastics (MPs), fibers are one of the most abundant shapes encountered in the aquatic environment. Growing attention is being focused on this typology of particles since they are considered an important form of marine contamination. Information about microfibers distribution in the Mediterranean Sea is still limited and the increasing evidence of the high amount of fibers in the aquatic environment should lead to a different classification from MPs which, by definition, are composed only of synthetic materials and not natural. In the past, cellulosic fibers (natural and regenerated) have been likely included in the synthetic realm by hundreds of studies, inflating “micro-plastic” counts in both environmental matrices and organisms. Comparisons are often hampered because many of the available studies have explicitly excluded the micro-fibers (MFs) content due, for example, to methodological problems. Considering the abundance of micro-fibers in the environment, a chemical composition analysis is fundamental for toxicological assessments. Overall, the results of this review work provide the basis to monitor and mitigate the impacts of microfiber pollution on the sea ecosystems in the Mediterranean Sea, which can be used to investigate other basins of the world for future risk assessment
    • …
    corecore