105 research outputs found

    Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta

    Get PDF
    The presence of a noticeable rate of degradation in the land of the Nile Delta reduces the efficiency of crop production and hinders supply of the increasing demand of its growing population. For this purpose, knowledge of soil resources and their agricultural potential is important for determining their proper use and appropriate management. Thus, we investigated the state of soil fertility by understanding the effect of the physical and chemical properties of the soil and their impact on the state of land degradation for the years 1985, 2002 (ancillary data), and 2021 (our investigation). The study showed that there are clear changes in the degree of soil salinity as a result of agricultural management, water conditions, and climatic changes. The soil fertility is obtained in four classes: Class one (I) represents soils of a good fertility level with an area of about 39%. Class two (II) includes soils of an average fertility level, on an area of about 7%. Class three (III) includes soils with a poor level of fertility, with an area of about 17%. Class four (IV) includes soils of a very poor level of fertility with an area of about 37% of the total area. Principal component analysis (PCA) has revealed that the parameters that control fertility in the studied soils are: C/N, pH, Ca, CEC, OM, P, and Mg. Agro-pedo-ecological units are important units for making appropriate agricultural decisions in the long term, which contribute to improving soil quality and thus increasing the efficiency of soil fertility processes

    Determining the Extent of Soil Degradation Processes Using Trend Analyses at a Regional Multispectral Scale

    Get PDF
    In order to ensure the sustainability of production from agricultural lands, the degradation processes surrounding the fertile land environment must be monitored. Human-induced risk and status of soil degradation (SD) were assessed in the Northern-Eastern part of the Nile delta using trend analyses for years 2013 to 2023. SD hotspot areas were identified using time-series analysis of satellite-derived indices as a small fraction of the difference between the observed indices and the geostatistical analyses projected from the soil data. The method operated on the assumption that the negative trend of photosynthetic capacity of plants is an indicator of SD independently of climate variability. Combinations of soil, water, and vegetation’s indices were integrated to achieve the goals of the study. Thirteen soil profiles were dug in the hotspots areas. The soil was affected by salinity and alkalinity risks ranging from slight to strong, while compaction and waterlogging ranged from slight to moderate. According to the GIS-model results, 30% of the soils were subject to slight degradation threats, 50% were subject to strong risks, and 20% were subject to moderate risks. The primary human-caused sources of SD are excessive irrigation, poor conservation practices, improper utilisation of heavy machines, and insufficient drainage. Electrical conductivity (EC), exchangeable soil percentage (ESP), bulk density (BD), and water table depth were the main causes of SD in the area. Generally, chemical degradation risks were low, while physical risks were very high in the area. Trend analyses of remote sensing indices (RSI) proved to be effective and accurate tools to monitor environmental dynamic changes. Principal components analyses were used to compare and prioritise among the used RSI. RSI pixel-wise residual trend indicated SD areas were related to soil data. The spatial and temporal trends of the indices in the region followed the patterns of drought, salinity, soil moisture, and the difficulties in separating the impacts of drought and submerged on SD on vegetation photosynthetic capacity. Therefore, future studies of land degradation and desertification should proceed using indices as a factor predictor of SD analysis

    Horses show individual level lateralisation when inspecting an unfamiliar and unexpected stimulus.

    Get PDF
    Animals must attend to a diverse array of stimuli in their environments. The emotional valence and salience of a stimulus can affect how this information is processed in the brain. Many species preferentially attend to negatively valent stimuli using the sensory organs on the left side of their body and hence the right hemisphere of their brain. Here, we investigated the lateralisation of visual attention to the rapid appearance of a stimulus (an inflated balloon) designed to induce an avoidance reaction and a negatively valent emotional state in 77 Italian saddle horses. Horses' eyes are laterally positioned on the head, and each eye projects primarily to the contralateral hemisphere, allowing eye use to be a proxy for preferential processing in one hemisphere of the brain. We predicted that horses would inspect the novel and unexpected stimulus with their left eye and hence right hemisphere. We found that horses primarily inspected the balloon with one eye, and most horses had a preferred eye to do so, however, we did not find a population level tendency for this to be the left or the right eye. The strength of this preference tended to decrease over time, with the horses using their non-preferred eye to inspect the balloon increasingly as the trial progressed. Our results confirm a lateralised eye use tendency when viewing negatively emotionally valent stimuli in horses, in agreement with previous findings. However, there was not any alignment of lateralisation at the group level in our sample, suggesting that the expression of lateralisation in horses depends on the sample population and testing context

    Combined Before-and-After Workplace Intervention to Promote Healthy Lifestyles in Healthcare Workers (STI-VI Study): Short-Term Assessment

    Get PDF
    Health care workers (HCWs) are prone to a heavy psycho-physical workload. Health promotion programs can help prevent the onset of chronic and work-related diseases. The aim of the STI-VI 'before-and-after' study, with assessments scheduled at 6 and 12 months, was to improve the lifestyle of HCWs with at least one cardiovascular risk factor. A tailored motivational counseling intervention, focusing on dietary habits and physical activity (PA) was administered to 167 HCWs (53 males; 114 females). BMI, waist circumference, blood pressure, and cholesterol, triglyceride, and blood glucose levels were measured before and after the intervention. The 6-month results (total sample and by gender) showed a marked effect on lifestyle: PA improved (+121.2 MET, p = 0.01), and diets became more similar to the Mediterranean model (+0.8, p < 0.001). BMI dropped (-0.2, p < 0.03), and waist circumference improved even more (-2.5 cm; p < 0.001). Other variables improved significantly: total and LDL cholesterol (-12.8 and -9.4 mg/dL, p < 0.001); systolic and diastolic blood pressure (-4.4 and -2.5 mmHg, p < 0.001); blood glucose (-1.5 mg/dL, p = 0.05); and triglycerides (significant only in women), (-8.7 mg/dL, p = 0.008); but HDL cholesterol levels dropped too. If consolidated at 12 months, these results indicate that our intervention can help HCWs maintain a healthy lifestyle and work ability
    • …
    corecore