407 research outputs found

    Evidence for Cosmic Acceleration is Robust to Observed Correlations Between Type Ia Supernova Luminosity and Stellar Age

    Full text link
    Type Ia Supernovae (SNe Ia) are powerful standardizable candles for constraining cosmological models and provided the first evidence of the accelerated expansion of the universe. Their precision derives from empirical correlations, now measured from >1000>1000 SNe Ia, between their luminosities, light-curve shapes, colors and most recently with the stellar mass of their host galaxy. As mass correlates with other galaxy properties, alternative parameters have been investigated to improve SN Ia standardization though none have been shown to significantly alter the determination of cosmological parameters. We re-examine a recent claim, based on 34 SN Ia in nearby passive host galaxies, of a 0.05 mag/Gyr dependence of standardized SN Ia luminosity on host age which if extrapolated to higher redshifts, would be a bias up to 0.25 mag, challenging the inference of dark energy. We reanalyze this sample of hosts using both the original method and a Bayesian hierarchical model and find after a fuller accounting of the uncertainties the significance of a dependence on age to be ≤2σ\leq2\sigma and ∼1σ\sim1\sigma after the removal of a single poorly-sampled SN Ia. To test the claim that a trend seen in old stellar populations can be applied to younger ages, we extend our analysis to a larger sample which includes young hosts. We find the residual dependence of host age (after all standardization typically employed for cosmological measurements) to be consistent with zero for 254 SNe Ia from the Pantheon sample, ruling out the large but low significance trend seen in passive hosts.Comment: 9 pages, 3 figures, 3 tables. Accepted for publication in ApJ

    Propagating Uncertainties in the SALT3 Model Training Process to Cosmological Constraints

    Full text link
    Type Ia supernovae (SNe Ia) are standardizable candles that must be modeled empirically to yield cosmological constraints. To understand the robustness of this modeling to variations in the model training procedure, we build an end-to-end pipeline to test the recently developed SALT3 model. We explore the consequences of removing pre-2000s low-zz or poorly calibrated UU-band data, adjusting the amount and fidelity of SN Ia spectra, and using a model-independent framework to simulate the training data. We find the SALT3 model surfaces are improved by having additional spectra and UU-band data, and can be shifted by ∼5%\sim 5\% if host galaxy contamination is not sufficiently removed from SN spectra. We find that resulting measurements of ww are consistent to within 2.5%2.5\% for all training variants explored in this work, with the largest shifts coming from variants that add color-dependent calibration offsets or host galaxy contamination to the training spectra, and those that remove pre-2000s low-zz data. These results demonstrate that the SALT3 model training procedure is largely robust to reasonable variations in the training data, but that additional attention must be paid to the treatment of spectroscopic data in the training process. We also find that the training procedure is sensitive to the color distributions of the input data; the resulting ww measurement can be biased by ∼2%\sim2\% if the color distribution is not sufficiently wide. Future low-zz data, particularly uu-band observations and high signal-to-noise ratio SN Ia spectra, will help to significantly improve SN Ia modeling in the coming years.Comment: 16 pages, 10 figure

    Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817

    Full text link
    The luminosity distance measurement of GW170817 derived from GW analysis in Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured inclination of the NS-NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broad-band X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t<40t<40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy 1048 erg<Ek≤3×1050 erg10^{48}\,\rm{erg}<E_{k}\le 3\times 10^{50} \,\rm{erg} propagating into an environment with density n∼10−2−10−4 cm−3n\sim10^{-2}-10^{-4} \,\rm{cm^{-3}}, with preference for wider jets (opening angle θj=15\theta_j=15 deg). For these jets, our modeling indicates an off-axis angle θobs∼25−50\theta_{\rm obs}\sim25-50 deg. We combine our constraints on θobs\theta_{\rm obs} with the joint distance-inclination constraint from LIGO. Using the same ∼170\sim 170 km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of H0=H_0=74.0±11.57.574.0 \pm \frac{11.5}{7.5} \mbox{km/s/Mpc}, which is higher than the value of H0=H_0=70.0±12.08.070.0 \pm \frac{12.0}{8.0} \mbox{km/s/Mpc} found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km/sec derived from previous work, we find H0=H_0=75.5±11.69.675.5 \pm \frac{11.6}{9.6} km/s/Mpc for H0 from this system. We note that this is in modestly better agreement with the local distance ladder than the Planck CMB, though a significant such discrimination will require ∼50\sim 50 such events. Future measurements at t>100t>100 days of the X-ray and radio emission will lead to tighter constraints.Comment: Submitted to ApJL. Comments Welcome. Revised uncertainties in v

    Type Ia Supernova cosmology combining data from the EuclidEuclid mission and the Vera C. Rubin Observatory

    Full text link
    The EuclidEuclid mission will provide first-of-its-kind coverage in the near-infrared over deep (three fields, ∼\sim10-20 square degrees each) and wide (∼\sim10000 square degrees) fields. While the survey is not designed to discover transients, the deep fields will have repeated observations over a two-week span, followed by a gap of roughly six months. In this analysis, we explore how useful the deep field observations will be for measuring properties of Type Ia supernovae (SNe Ia). Using simulations that include EuclidEuclid's planned depth, area and cadence in the deep fields, we calculate that more than 3700 SNe between 0.0<z<1.50.0<z<1.5 will have at least five EuclidEuclid detections around peak with signal-to-noise ratio larger than 3. While on their own, EuclidEuclid light curves are not good enough to directly constrain distances, when combined with LSST deep field observations, we find that uncertainties on SN distances are reduced by 20-30% for z0.8z0.8. Furthermore, we predict how well additional EuclidEuclid mock data can be used to constrain a key systematic in SN Ia studies - the size of the luminosity 'step' found between SNe hosted in high mass (>1010M⊙>10^{10} M_{\odot}) and low mass (>1010M⊙>10^{10} M_{\odot}) galaxies. This measurement has unique information in the rest-frame NIR. We predict that if the step is caused by dust, we will be able to measure its reduction in the NIR compared to optical at the 4σ\sigma level. We highlight that the LSST and EuclidEuclid observing strategies used in this work are still provisional and some level of joint processing is required. Still, these first results are promising, and assuming EuclidEuclid begins observations well before the Nancy Roman Space Telescope (Roman), we expect this dataset to be extremely helpful for preparation for Roman itself

    Zooming In on the Progenitors of Superluminous Supernovae With the HST

    Full text link
    We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs) (which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form, and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.Comment: ApJ in press; matches published version. Minor changes following referee's comments; conclusions unchange

    GALEX Detection of Shock Breakout in Type II-P Supernova PS1-13arp: Implications for the Progenitor Star Wind

    Full text link
    We present the GALEX detection of a UV burst at the time of explosion of an optically normal Type II-P supernova (PS1-13arp) from the Pan-STARRS1 survey at z=0.1665. The temperature and luminosity of the UV burst match the theoretical predictions for shock breakout in a red supergiant, but with a duration a factor of ~50 longer than expected. We compare the NUVNUV light curve of PS1-13arp to previous GALEX detections of Type IIP SNe, and find clear distinctions that indicate that the UV emission is powered by shock breakout, and not by the subsequent cooling envelope emission previously detected in these systems. We interpret the ~ 1 d duration of the UV signal with a shock breakout in the wind of a red supergiant with a pre-explosion mass-loss rate of ~ 10^-3 Msun yr^-1. This mass-loss rate is enough to prolong the duration of the shock breakout signal, but not enough to produce an excess in the optical plateau light curve or narrow emission lines powered by circumstellar interaction. This detection of non-standard, potentially episodic high mass-loss in a RSG SN progenitor has favorable consequences for the prospects of future wide-field UV surveys to detect shock breakout directly in these systems, and provide a sensitive probe of the pre-explosion conditions of SN progenitors.Comment: Accepted for Publication in Ap
    • …
    corecore