569 research outputs found
Observational constraints on the types of cosmic strings
This paper is aimed at setting observational limits to the number of cosmic
strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects
(textures). Radio maps of CMB anisotropy, provided by the space mission Planck
for various frequencies, were filtered and then processed by the method of
convolution with modified Haar functions (MHF) to search for cosmic string
candidates. This method was designed to search for solitary strings, without
additional assumptions about the presence of networks of such objects. The
sensitivity of the MHF method is in a background of
. The comparison of these with previously known
results on search string network shows that strings can only be semilocal in an
amount of , with the upper restriction on individual strings tension
(linear density) of . The texture model is
also legal. There are no strings with . However,
comparison with the data for the search of non-Gaussian signals shows that the
presence of several (up to 3) of Nambu-Goto strings is also possible. For
the MHF method is ineffective because of
unverifiable spurious string candidates. Thus the existence of strings with
tensions is not prohibited but it is beyond
the Planck data possibilities.Comment: 15 pages, 10 figures; accepted by the European Physical Journal
Probing the Ultrastructure of Spheroids and Their Uptake of Magnetic Nanoparticles by FIB–SEM
Spheroids are 3D cellular systems largely adopted as model for high-throughput screening of molecules and diagnostics tools. Furthermore, those cellular platforms also represent a model for testing new delivery carries for selective targeting. The coupling between the 3D cell environment and the nanovectors can be explored at the macroscale by optical microscopy. However, the nanomaterial-cell interplay finds major action at the single cell and extracellular matrix level with nanoscale interactions. Electron microscopy offers the resolution to investigate those interactions; however, the specimen preparation finds major drawbacks in its operation time and preciseness. In this context, focused ion beam and scanning electron microscopy (FIB–SEM) allows for fast processing and high resolution of the cell-nanomaterial interface. Here, in fact, a novel approach is shown to prepare large-area 3D spheroid cell culture specimens for FIB–SEM. Sectioning procedures are explored to preserve the peculiar structure of spheroids and their interaction with magnetic nanovectors. The results pave the way for advanced investigations of 3D cellular systems with nano and micromaterials relevant to tissue engineering, bioelectronics, and diagnostics
PHK from phenol hydroxylase of Pseudomonas sp. OX1. Insight into the role of an accessory protein in bacterial multicomponent monooxygenases
Bacterial multicomponent monooxygenases (BMMs) are members of a wide family of diiron enzymes that use molecular oxygen to hydroxylate a variety of aromatic compounds. The presence of genes encoding for accessory proteins not involved in catalysis and whose role is still elusive, is a common feature of the gene clusters of several BMMs, including phenol hydroxylases and several soluble methane monooxygenases. In this study we have expressed, purified, and partially characterized the accessory component PHK of the phenol hydroxylase from Pseudomonas sp. OX1, a bacterium able to degrade several aromatic compounds. The phenol hydroxylase (ph) gene cluster was expressed in Escherichia coli/JM109 cells in the absence and in the presence of the phk gene. The presence of the phk gene lead to an increase in the hydroxylase activity of whole recombinant cells with phenol. PHK was assessed for its ability to interact with the active hydroxylase complex. Our results show that PHK is neither involved in the catalytic activity of the phenol hydroxylase complex nor required for the assembly of apo-hydroxylase. Our results suggest instead that this component may be responsible for enhancing iron incorporation into the active site of the apo-hydroxylase
Weight Loss in Advanced Chronic Kidney Disease: Should We Consider Individualised, Qualitative, ad Libitum Diets? A Narrative Review and Case Study.
In advanced chronic kidney disease, obesity may bring a survival advantage, but many transplant centres demand weight loss before wait-listing for kidney graft. The case here described regards a 71-year-old man, with obesity-related glomerulopathy; referral data were: weight 110 kg, Body Mass Index (BMI) 37 kg/m2, serum creatinine (sCr) 5 mg/dL, estimated glomerular filtration rate (eGFR) 23 mL/min, blood urea nitrogen (BUN) 75 mg/dL, proteinuria 2.3 g/day. A moderately restricted, low-protein diet allowed reduction in BUN (45–55 mg/dL) and good metabolic and kidney function stability, with a weight increase of 6 kg. Therefore, he asked to be enrolled in a weight-loss program to be wait-listed (the two nearest transplant centres required a BMI below 30 or 35 kg/m2). Since previous low-calorie diets were not successful and he was against a surgical approach, we chose a qualitative, ad libitum coach-assisted diet, freely available in our unit. In the first phase, the diet is dissociated; he lost 16 kg in 2 months, without need for dialysis. In the second maintenance phase, in which foods are progressively combined, he lost 4 kg in 5 months, allowing wait-listing. Dialysis started one year later, and was followed by weight gain of about 5 kg. He resumed the maintenance diet, and his current body weight, 35 months after the start of the diet, is 94 kg, with a BMI of 31.7 kg/m2, without clinical or biochemical signs of malnutrition. This case suggests that our patients can benefit from the same options available to non-CKD (chronic kidney disease) individuals, provided that strict multidisciplinary surveillance is assured
Erosion of Empathy in Primary Care Trainees
Objective:
To evaluate if empathy among physician residents (trainees) differs dependent on training year and to assess trainees\u27 characteristics associated with higher empathy scores.
Poster presented at 2016 ISPOR conference in Washington DC.https://jdc.jefferson.edu/jcphposters/1006/thumbnail.jp
The Impact of Treated Urban Wastewaters and Flood Discharge on the Quality of Bathing Water
What do we know about the Adriatic Sea and the state of its health [...
Trends in h2s-donors chemistry and their effects in cardiovascular diseases
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases
Expression and purification of the recombinant subunits of toluene/o-xylene monooxygenase and reconstitution of the active complex.
This paper describes the cloning of the genes coding for each component of the complex of toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1, their expression, purification and characterization. Moreover, the reconstitution of the active complex from the recombinant subunits has been obtained, and the functional role of each component in the electron transfer from the electron donor to molecular oxygen has been determined. The coexpression of subunits B, E and A leads to the formation of a subcomplex, named H, with a quaternary structure (BEA)2, endowed with hydroxylase activity. Tomo F component is an NADH oxidoreductase. The purified enzyme contains about 1 mol of FAD, 2 mol of iron, and 2 mol of acid labile sulfide per mol of protein, as expected for the presence of one [2Fe-2S] cluster, and exhibits a typical flavodoxin absorption spectrum. Interestingly, the sequence of the protein does not correspond to that previously predicted on the basis of DNA sequence. We have shown that this depends on minor errors in the gene sequence that we have corrected. C component is a Rieske-type ferredoxin, whose iron and acid labile sulfide content is in agreement with the presence of one [2Fe-2S] cluster. The cluster is very sensitive to oxygen damage. Mixtures of the subcomplex H and of the subunits F, C and D are able to oxidize p-cresol into 4-methylcathecol, thus demonstrating the full functionality of the recombinant subunits as purified. Finally, experimental evidence is reported which strongly support a model for the electron transfer. Subunit F is the first member of an electron transport chain which transfers electrons from NADH to C, which tunnels them to H subcomplex, and eventually to molecular oxyge
- …