433 research outputs found

    Junior Recital: Aaron Scoccia, trumpet

    Get PDF

    Senior Recital: Aaron Scoccia, trumpet

    Get PDF

    Elective Recital: Aaron Scoccia, trumpet

    Get PDF

    Elective Recital: Aaron Scoccia, trumpet

    Get PDF

    District Power-To-Heat/Cool Complemented by Sewage Heat Recovery

    Get PDF
    District heating and cooling (DHC), when combined with waste or renewable energy sources, is an environmentally sound alternative to individual heating and cooling systems in buildings. In this work, the theoretical energy and economic performances of a DHC network complemented by compression heat pump and sewage heat exchanger are assessed through dynamic, year-round energy simulations. The proposed system comprises also a water storage and a PV plant. The study stems from the operational experience on a DHC network in Budapest, in which a new sewage heat recovery system is in place and provided the experimental base for assessing main operational parameters of the sewage heat exchanger, like effectiveness, parasitic energy consumption and impact of cleaning. The energy and economic potential is explored for a commercial district in Italy. It is found that the overall seasonal COP and EER are 3.10 and 3.64, while the seasonal COP and EER of the heat pump alone achieve 3.74 and 4.03, respectively. The economic feasibility is investigated by means of the levelized cost of heating and cooling (LCOHC). With an overall LCOHC between 79.1 and 89.9 €/MWh, the proposed system can be an attractive solution with respect to individual heat pumps.This research was funded by the European Commission, H2020-project Heat4Cool, grant number 723925. The work has also been supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under Contract No. 16.0082

    A human-oriented design process for collaborative robotics

    Get PDF
    The potential of collaborative robotics often does not materialize in an efficient design of the human-robot collaboration. Technology-oriented approaches are no longer enough in the Industry 4.0 era. This work proposes a set of methods to support manufacturing engineers in the human-oriented design process of integrated production systems to obtain satisfactory performance in the mass customization paradigm, without impacting the safety and health of workers. It founds the design criteria definition on five main pillars (safety, ergonomics, effectiveness, flexibility, and costs), favors the consideration of different design alternatives, and leads their selection. The dynamic impact of the design choices on the various elements of the system prevails over the static design constraints. The method has been experimented in collaboration with the major kitchen manufacturer in Italy, which introduced a collaborative robotics cell in the drawers' assembly line. It resulted in a more balanced production line (10% more), a verified risk minimization (RULA score reduced from 5 to 3 and OCRA score from 13.30 to 5.70), and a greater allocation of operators to high added value activities

    Adaptive Obstacle Avoidance for a Class of Collaborative Robots

    Get PDF
    In a human–robot collaboration scenario, operator safety is the main problem and must be guaranteed under all conditions. Collision avoidance control techniques are essential to improve operator safety and robot flexibility by preventing impacts that can occur between the robot and humans or with objects inadvertently left within the operational workspace. On this basis, collision avoidance algorithms for moving obstacles are presented in this paper: inspired by algorithms already developed by the authors for planar manipulators, algorithms are adapted for the 6-DOF collaborative manipulators by Universal Robots, and some new contributions are introduced. First, in this work, the safety region wrapping each link of the manipulator assumes a cylindrical shape whose radius varies according to the speed of the colliding obstacle, so that dynamical obstacles are avoided with increased safety regions in order to reduce the risk, whereas fixed obstacles allow us to use smaller safety regions, facilitating the motion of the robot. In addition, three different modalities for the collision avoidance control law are proposed, which differ in the type of motion admitted for the perturbation of the end-effector: the general mode allows for a 6-DOF perturbation, but restrictions can be imposed on the orientation part of the avoidance motion using 4-DOF or 3-DOF modes. In order to demonstrate the effectiveness of the control strategy, simulations with dynamic and fixed obstacles are presented and discussed. Simulations are also used to estimate the required computational effort in order to verify the transferability to a real system

    COMET: Co-simulation of Multi-Energy Systems for Energy Transition

    Get PDF
    The ongoing energy transition to reduce carbon emissions presents some of the most formidable challenges the energy sector has ever experienced, requiring a paradigm change that involves diverse players and heterogeneous concerns, includ- ing regulations, economic drivers, societal, and environmental aspects. Central to this transition is the adoption of integrated multi-energy systems (MES) to efficiently produce, distribute, store, and convert energy among different vectors. A deep understanding of MES is fundamental to harness the potential for energy savings and foster energy transition towards a low carbon future. Unfortunately, the inherent complexity of MES makes them extremely difficult to analyze, understand, design and optimize. This work proposes a digital twin co-simulation platform that provides a structured basis to design, develop and validate novel solutions and technologies for multi-energy system. The platform will enable the definition of a virtual representation of the real-world (digital twin) as a composition of models (co-simulation) that analyze the environment from multiple viewpoints and at different spatio-temporal scales
    • …
    corecore