107 research outputs found

    Insight into microstructure and flexural strength of ultra-high temperature ceramics enriched SICARBONā„¢ composite

    Get PDF
    Research efforts on Ceramic Matrix Composites (CMCs) are aimed to increase the operating temperature in oxidizing environments by adding Ultra-High Temperature Ceramic (UHTC) phases to the matrix. The structural performances of UHTC-enriched CMCs are generally investigated through bending test because it requires simple fixture and specimen geometry with small quantity of plate material. However, there are hardly any scientific studies which bring out what bending test conditions are required to determine reliable flexural strength of these composites. In this study, the effect of span length and specimen orientation on the flexural strength of UHTC-enriched SICARBONā„¢ material, produced by Airbus, was comprehensively evaluated and reported. Transition of the failure mode was obtained by tilting the specimens with horizontal build direction instead of lay-up configuration (vertical build direction). The tilted configuration allowed to get a valid flexural strength of 370 MPa even with small specimens of about 30 mm. To assess failure mode in different test configurations, virtual microstructure was generated on the base of cumulative distribution functions of observed microstructural features. Tsai-Wu failure criterion was extended in order to evaluate direction dependent failure indices for different lay-up configurations

    Reactive melt infiltration of carbon fibre reinforced ZrB2/B composites with Zr2Cu

    Get PDF
    The microstructure and mechanical properties of carbon fibre reinforced ZrB2 composites produced by slurry infiltration and consolidated by reactive melt infiltration were investigated. Fibres were preliminary infiltrated with ZrB2/B slurries with varying ZrB2/B ratios. Then the composites were infiltrated with Zr2Cu melt at 1200 Ā°C under vacuum. Boron was chosen as the reactant phase, while raw ZrB2 was added as a filler to prevent excessive swelling. With increase of boron content the infiltration becomes more difficult due to the reaction of alloy and boron. The boron is completely converted to nano ZrB2 grains. Some ZrC is produced from the side reaction between Zr2Cu and the carbon fibre, resulting in reduction of fibre diameter. The flexural strength increased from 360 to 560 MPa with the increase of boron content, while KIc amounted to 10 MPaā‹…m0.5 but was affected by large scatter. The mechanical behaviour was mostly dominated by matrix properties

    Development of UHTCMCs via water based ZrB2 powder slurry infiltration and polymer infiltration and pyrolysis

    Get PDF
    Cf/ZrB2-SiC ultra-high temperature composites were manufactured via aqueous slurry impregnation coupled with polymer infiltration and pyrolysis, using a allylhydrido polycarbosilane precursor. For the first time we used ultra-high modulus pitch-based carbon fibres for the PIP process, investigating three different architectures, 0/0Ā°, 0/90Ā°, and 2D. Microstructure, mechanical properties and oxidation resistance in air at 1650 Ā°C were investigated. As expected, the mechanical properties showed the tendency to decrease with increase of the preforms complexity, due to the higher amount of flaws and residual stresses. For instance, the flexural strength was approaching 500 MPa for 0/0Ā°, 370 MPa for 0/90Ā° and 190 MPa for 2D. The materials showed an optimal resistance to oxidation at 1650 Ā°C thanks to formation of a viscous borosilicate glass that guaranteed a self-healing functionality

    Is spark plasma sintering suitable for the densification of continuous carbon fibre - UHTCMCs?

    Get PDF
    For the first time we show that spark plasma sintering can efficiently replace hot pressing for the densification of UHTCMCs, in the present case ZrB2/SiC composites reinforced with continuous carbon fibres. To this purpose, the same materials were first produced by hot pressing as baseline samples and then by spark plasma sintering (SPS) to compare microstructure and basic mechanical properties. A special emphasis was given to the study of interfaces, in case of both coated and uncoated carbon fibres. SPS allowed for faster sintering but required an adjustment of the temperature to avoid fibre degradation compared to hot pressing. With similar porosity levels, we observed a slight decrease of flexural strength (300 vs 470 MPa), and an improvement of fracture toughness (15 vs 10 MPaāˆšm) for SPSed samples. SPS was proved to be an effective method for the consolidation of continuous fibre reinforced UHTC composites

    Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering

    Get PDF
    In this paper, for the first time, we report the manufacturing and characterization of large UHTCMCs discs, made of a ZrB2/SiC matrix reinforced with PyC-coated PAN-based carbon fibres. This work was the result of a long term collaboration between different institutions and shows how it is possible to scale-up the production process of UHTCMCs for the fabrication of large components. 150 mm large discs were produced by filament winding and consolidated by spark plasma sintering and specimens were machined to test a large set of material properties at room and elevated temperature (up to 1800 Ā°C). The extensive characterization revealed a new material with mechanical behaviour similar to CMCs, but with intrinsic higher thermal stability. Furthermore, the scale-up demonstrated in this work increases the appeal of UHTCMCs in sectors such as aerospace, where severe operating conditions limit the application of conventional materials

    Retained strength of UHTCMCs after oxidation at 2278 K

    Get PDF
    In the frame of Horizon 2020 European C3HARME research project, the manufacture of ZrB2-based CMCs was developed through different processes: slurry infiltration and sintering, radio frequency chemical vapour infiltration (RF-CVI) and reactive metal infiltration (RMI). To assess the high temperature stability, room temperature bending strength was measured after oxidizing the samples at 2278 K and compared to the strength of the as-produced materials. Microstructures were analysed before and after the thermal treatment to assess the damage induced by the high temperature oxidation. Short fibre-reinforced composites showed the highest retained strength (>80%) and an unchanged stressā€“strain curve

    Processing of UHTCMCs

    Get PDF
    There is an increasing demand for advanced materials with temperature capability in highly corrosive environments for aerospace. Rocket nozzles of solid/hybrid rocket motors must survive harsh thermochemical and mechanical environments produced by high performance solid propellants (2700-3500Ā°C). Thermal protection systems (TPS) for space vehicles flying at Mach 7 must withstand projected service temperatures up to 2500Ā°C associated to convective heat fluxes up to 15 MWm-2 and intense mechanical vibrations at launch and re-entry into Earthā€™s atmosphere. The combination of extremely hot temperatures, chemically aggressive environments and rapid heating/cooling is beyond the capabilities of current materials. As indicated by the previous talk, the main purpose of C3HARME is to design, develop, manufacture, test and validate a new class of out-performing, reliable, cost-effective and scalable Ultra High Temperature Ceramic Matrix Composites (UHTCMCs) based on C fibre preforms enriched with ultra-high temperature ceramics (UHTCs) and capable of in-situ repairing damage induced during operation in severe aerospace environments. Two main applications are envisaged: near-ZERO erosion rocket nozzles that must maintain dimensional stability during firing in combustion chambers, and near-ZERO ablation thermal protection systems enabling hypersonic space vehicles to maintain flight performance. This talk aims at providing an indication of progress to date within Work Package 2, which is focused on the processing of Cf-ZrB2 UHTCMCs. Four primary routes are being investigated, these include: green forming of fibre reinforced UHT ceramics followed by spark plasma sintering; radio-frequency enhanced chemical vapour infiltration of UHTCMCs; reactive melt infiltration of UHTCMCs and polymer infiltration and pyrolysis of UHTCMCs. All four approaches will be outlined and conclusions drawn, plus there will be a brief mention of ongoing work into atomistic modelling of processes at materials interfaces and nanoparticle dispersion with a view to imparting self-healing properties. Acknowledgements: This work has received funding from the European Unionā€™s Horizon 2020 ā€œResearch and innovation programmeā€ under grant agreement NĀ°685594 (C3HARME
    • ā€¦
    corecore