985 research outputs found

    Saddles and softness in simple model liquids

    Full text link
    We report a numerical study of saddles properties of the potential energy landscape for soft spheres with different softness, i.e. different power n of the interparticle repulsive potential. We find that saddle-based quantities rescale into master curves once energies and temperatures are scaled by mode-coupling temperature T_MCT, confirming and generalizing previous findings obtained for Lennard-Jones like models.Comment: 2 pages, 2 figure

    Circumstellar Disks in the Outer Galaxy: the Star-Forming Region NGC 1893

    Get PDF
    It is still debated whether star formation process depends on environment. In particular it is yet unclear whether star formation in the outer Galaxy, where the environmental conditions are, theoretically, less conducive, occurs in the same way as in the inner Galaxy. We investigate the population of NGC1893, a young cluster ~3-4 Myr in the outer part of the Galaxy (galactic radius >11 Kpc), to explore the effects of environmental conditions on star forming regions. We present infrared observations acquired using the IRAC camera onboard the Spitzer Space Telescope and analyze the color-color diagrams to establish the membership of stars with excesses. We also merge this information with that obtained from Chandra ACIS-I observations, to identify the Class III population. We find that the cluster is very rich, with 242 PMS Classical T-Tauri stars and 7 Class 0/I stars. We identify 110 Class III candidate cluster members in the ACIS-I field of view. We estimate a disk fraction for NGC1893 of about 67%, similar to fractions calculated for nearby star forming regions of the same age. Although environmental conditions are unfavorable, star formation can clearly be very successful in the outer Galaxy, allowing creation of a very rich cluster like NGC1893.Comment: 10 pages,7 figures,4 table

    The stellar population of Sco OB2 revealed by Gaia DR2 data

    Get PDF
    Sco OB2 is the nearest OB association, extending over approximately 2000 sq.deg. on the sky. Only its brightest members are already known (from Hipparcos) across its entire size, while studies of its lower-mass population refer only to small portions of its extent. In this work we exploit the capabilities of Gaia DR2 measurements to search for Sco OB2 members across its entire size and down to the lowest stellar masses. We use both Gaia astrometric and photometric data to select association members, using minimal assumptions derived mostly from the Hipparcos studies. Gaia resolves small details in both the kinematics of individual Sco OB2 subgroups and their distances from the Sun. We develop methods to explore the 3D kinematics of stellar populations covering large sky areas. We find ~11000 pre-main sequence (PMS) Sco OB2 members (with <3% contamination), plus ~3600 MS candidate members with a larger (10-30%) field-star contamination. A higher-confidence subsample of ~9200 PMS (and ~1340 MS) members is also selected (<1% contamination for the PMS), affected however by larger (~15%) incompleteness. We classify separately stars in compact and diffuse populations. Most members belong to a few kinematically distinct diffuse populations, whose ensemble outlines the association shape. Upper Sco is the densest part of Sco OB2, with a complex spatial and kinematical structure, and no global pattern of motion. Other dense subclusters are found in Upper Centaurus-Lupus and in Lower Centaurus-Crux. Most clustered stars appear to be younger than the diffuse PMS population, suggesting star formation in small groups which rapidly disperse and dilute, while keeping memory of their original kinematics. We also find that the open cluster IC 2602 has a similar dynamics to Sco OB2, and its PMS members are evaporating and forming a ~10 deg halo around its double-peaked core.Comment: 27 pages, 37 figures. Accepted for publication in Astronomy and Astrophysic

    Quasi-saddles as relevant points of the potential energy surface in the dynamics of supercooled liquids

    Full text link
    The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying relevant points of the potential energy surface, i.e. the minima of the square gradient of total potential energy VV. The main findings are: ({\it i}) the number of negative curvatures nn of these sampled points appears to extrapolate to zero at the mode coupling critical temperature TcT_c; ({\it ii}) the temperature behavior of n(T)n(T) has a close relationship with the temperature behavior of the diffusivity; ({\it iii}) the potential energy landscape shows an high regularity in the distances among the relevant points and in their energy location. Finally we discuss a model of the landscape, previously introduced by Madan and Keyes [J. Chem. Phys. {\bf 98}, 3342 (1993)], able to reproduce the previous findings.Comment: To be published in J. Chem. Phy

    Low mass star formation and subclustering in the HII regions RCW 32, 33 and 27 of the Vela Molecular Ridge. A photometric diagnostics to identify M-type stars

    Get PDF
    Most stars born in clusters and recent results suggest that star formation (SF) preferentially occurs in subclusters. Studying the morphology and SF history of young clusters is crucial to understanding early SF. We identify the embedded clusters of young stellar objects (YSOs) down to M stars, in the HII regions RCW33, RCW32 and RCW27 of the Vela Molecular Ridge. Our aim is to characterise their properties, such as morphology and extent of the clusters in the three HII regions, derive stellar ages and the connection of the SF history with the environment. Through public photometric surveys such as Gaia, VPHAS, 2MASS and Spitzer/GLIMPSE, we identify YSOs with IR, Halpha and UV excesses, as signature of circumstellar disks and accretion. In addition, we implement a method to distinguish M dwarfs and giants, by comparing the reddening derived in several optical/IR color-color diagrams, assuming suitable theoretical models. Since this diagnostic is sensitive to stellar gravity, the procedure allows us to identify pre-main sequence stars. We find a large population of YSOs showing signatures of circumstellar disks with or without accretion. In addition, with the new technique of M-type star selection, we find a rich population of young M stars with a spatial distribution strongly correlated to the more massive population. We find evidence of three young clusters, with different morphology. In addition, we identify field stars falling in the same region, by securely classifying them as giants and foreground MS stars. We identify the embedded population of YSOs, down to about 0.1 Msun, associated with the HII regions RCW33, RCW32 and RCW27 and the clusters Vela T2, Cr197 and Vela T1, respectively, showing very different morphologies. Our results suggest a decreasing SF rate in Vela T2 and triggered SF in Cr197 and Vela T1.Comment: Accepted for publication in A&A; 20 pages, 22 figures, 6 table

    Test of the semischematic model for a liquid of linear molecules

    Full text link
    We apply to a liquid of linear molecules the semischematic mode-coupling model, previously introduced to describe the center of mass (COM) slow dynamics of a network-forming molecular liquid. We compare the theoretical predictions and numerical results from a molecular dynamics simulation, both for the time and the wave-vector dependence of the COM density-density correlation function. We discuss the relationship between the presented analysis and the results from an approximate solution of the equations from molecular mode-coupling theory [R. Schilling and T. Scheidsteger, Phys. Rev. E 56 2932 (1997)].Comment: Revtex, 10 pages, 4 figure

    Dynamics in a supercooled molecular liquid: Theory and Simulations

    Full text link
    We report extensive simulations of liquid supercooled states for a simple three-sites molecular model, introduced by Lewis and Wahnstr"om [L. J. Lewis and G. Wahnstr"om, Phys. Rev. E 50, 3865 (1994)] to mimic the behavior of ortho-terphenyl. The large system size and the long simulation length allow to calculate very precisely --- in a large q-vector range --- self and collective correlation functions, providing a clean and simple reference model for theoretical descriptions of molecular liquids in supercooled states. The time and wavevector dependence of the site-site correlation functions are compared with detailed predictions based on ideal mode-coupling theory, neglecting the molecular constraints. Except for the wavevector region where the dynamics is controlled by the center of mass (around 9 nm-1), the theoretical predictions compare very well with the simulation data.

    General features of the energy landscape in Lennard-Jones like model liquids

    Full text link
    Features of the energy landscape sampled by supercooled liquids are numerically analyzed for several Lennard-Jones like model systems. The properties of quasisaddles (minima of the square gradient of potential energy W=|grad V|^2), are shown to have a direct relationship with the dynamical behavior, confirming that the quasisaddle order extrapolates to zero at the mode-coupling temperature T_MCT. The same result is obtained either analyzing all the minima of W or the saddles (absolute minima of W), supporting the conjectured similarity between quasisaddles and saddles, as far as the temperature dependence of the properties influencing the slow dynamics is concerned. We find evidence of universality in the shape of the landscape: plots for different systems superimpose into master curves, once energies and temperatures are scaled by T_MCT. This allows to establish a quantitative relationship between T_MCT and potential energy barriers for LJ-like systems, and suggests a possible generalization to different model liquids.Comment: 8 pages, 5 figure

    Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water

    Full text link
    It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high-density liquid (HDL) water, while low-density amorphous (LDA) ice is a structurally arrested form of low-density liquid (LDL) water. Recent experiments and simulations have been interpreted to support the possibility of a second "distinct" high-density structural state, named very high-density amorphous (VHDA) ice, questioning the LDL-HDL hypothesis. We test this interpretation using extensive computer simulations, and find that VHDA is a more stable form of HDA and that in fact VHDA should be considered as the amorphous ice of the quenched HDL.Comment: 5 pages, 4 fig
    • …
    corecore