293 research outputs found
Calculation of energy levels and transition amplitudes for barium and radium
The radium atom is a promising system for studying parity and time invariance
violating weak interactions. However, available experimental spectroscopic data
for radium is insufficient for designing an optimal experimental setup. We
calculate the energy levels and transition amplitudes for radium states of
significant interest. Forty states corresponding to all possible configurations
consisting of the , and single-electron states as well as the
states of the , and configurations have been calculated.
The energies of ten of these states corresponding to the , ,
, and configurations are not known from experiment. Calculations
for barium are used to control the accuracy.Comment: 12 pages, 4 table
Double-beta decay Q values of 130Te, 128Te, and 120Te
The double-beta decay Q values of 130Te, 128Te, and 120Te have been
determined from parent-daughter mass differences measured with the Canadian
Penning Trap mass spectrometer. The 132Xe-129Xe mass difference, which is
precisely known, was also determined to confirm the accuracy of these results.
The 130Te Q value was found to be 2527.01(32) keV which is 3.3 keV lower than
the 2003 Atomic Mass Evaluation recommended value, but in agreement with the
most precise previous measurement. The uncertainty has been reduced by a factor
of 6 and is now significantly smaller than the resolution achieved or foreseen
in experimental searches for neutrinoless double-beta decay. The 128Te and
120Te Q values were found to be 865.87(131) keV and 1714.81(125) keV,
respectively. For 120Te, this reduction in uncertainty of nearly a factor of 8
opens up the possibility of using this isotope for sensitive searches for
neutrinoless double-electron capture and electron capture with positron
emission.Comment: 5 pages, 2 figures, submitted to Physical Review Letter
Beta-delayed-neutron studies of Sb and I performed with trapped ions
Beta-delayed-neutron (n) spectroscopy was performed using the
Beta-decay Paul Trap and an array of radiation detectors. The n
branching ratios and energy spectra for Sb and I were
obtained by measuring the time of flight of recoil ions emerging from the
trapped ion cloud. These nuclei are located at the edge of an isotopic region
identified as having n branching ratios that impact the r-process
abundance pattern around the A~130 peak. For Sb and I,
n branching ratios of 14.6(11)%, 17.6(28)%, and 7.6(28)% were
determined, respectively. The n energy spectra obtained for Sb
and I are compared with results from direct neutron measurements, and
the n energy spectrum for Sb has been measured for the first
time
Standard Model tests with trapped radioactive atoms
We review the use of laser cooling and trapping for Standard Model tests,
focusing on trapping of radioactive isotopes. Experiments with neutral atoms
trapped with modern laser cooling techniques are testing several basic
predictions of electroweak unification. For nuclear decay, demonstrated
trap techniques include neutrino momentum measurements from beta-recoil
coincidences, along with methods to produce highly polarized samples. These
techniques have set the best general constraints on non-Standard Model scalar
interactions in the first generation of particles. They also have the promise
to test whether parity symmetry is maximally violated, to search for tensor
interactions, and to search for new sources of time reversal violation. There
are also possibilites for exotic particle searches. Measurements of the
strength of the weak neutral current can be assisted by precision atomic
experiments using traps of small numbers of radioactive atoms, and sensitivity
to possible time-reversal violating electric dipole moments can be improved.Comment: 45 pages, 17 figures, v3 includes clarifying referee comments,
especially in beta decay section, and updated figure
Tensor interaction limit derived from the α-β-ν̄ correlation in trapped Li8 ions
A measurement of the α-β-ν̄ angular correlation in the Gamow-Teller decay Li8→Be*8+ν̄+β, Be*8→ α+α has been performed using ions confined in a linear Paul trap surrounded by silicon detectors. The energy difference spectrum of the α particles emitted along and opposite the direction of the β particle is consistent with the standard model prediction and places a limit of 3.1% (95.5% confidence level) on any tensor contribution to the decay. From this result, the amplitude of any tensor component CT relative to that of the dominant axial-vector component CA of the electroweak interaction is limited to |CT/CA|\u3c0.18 (95.5% confidence level). This experimental approach is facilitated by several favorable features of the Li8 β decay and has different systematic effects than the previous β-ν̄ correlation results for a pure Gamow-Teller transition obtained from studying He6 β decay. © 2013 American Physical Society
β -decay half-lives of Sb 134,134m and their isomeric yield ratio produced by the spontaneous fission of Cf 252
A number of fission products possess isomeric states which have a nuclear spin significantly different from that of the ground state. The yield ratio of these states following fission is influenced by the angular momentum present in the fissioning system. The Sb134m,134 yield ratio had not been previously measured in the spontaneous fission of Cf252; however, it had previously been observed to favor the (7-) isomer over the (0-) ground state in U235(nth,f) and Th232(25 MeV p,f). Using a mass-separated beam of low-energy Sb134,134m ions produced by Cf252 spontaneous fission at the CARIBU facility, β particles and γ rays were detected using the SATURN/X-Array decay station to determine the fission-yield ratio and β-decay half-lives. The Sb134m to Sb134 fission yield was determined to be 2.03±0.05 and the half-lives of Sb134m and Sb134 were found to be 9.87±0.08 s and 0.674±0.004 s, respectively. These results represent the first isomeric yield ratio measurement for this nucleus, and improved measurements of the Sb134 ground state and the Sb134m isomer half-lives
β-delayed neutron spectroscopy using trapped radioactive ions
A novel technique for β-delayed neutron spectroscopy has been demonstrated using trapped ions. The neutron-energy spectrum is reconstructed by measuring the time of flight of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection, such as backgrounds from scattered neutrons and γ rays and complicated detector-response functions. I+137 ions delivered from a Cf252 source were confined in a linear Paul trap surrounded by radiation detectors, and the β-delayed neutron-energy spectrum and branching ratio were determined by detecting the β- and recoil ions in coincidence. Systematic effects were explored by determining the branching ratio three ways. Improvements to achieve higher detection efficiency, better energy resolution, and a lower neutron-energy threshold are proposed. © 2013 American Physical Society
Limit on Tensor Currents from Li 8 β Decay
In the standard model, the weak interaction is formulated with a purely vector-axial-vector (V-A) structure. Without restriction on the chirality of the neutrino, the most general limits on tensor currents from nuclear β decay are dominated by a single measurement of the β-ν¯ correlation in He6 β decay dating back over a half century. In the present work, the β-ν¯-α correlation in the β decay of Li8 and subsequent α-particle breakup of the Be8∗ daughter was measured. The results are consistent with a purely V-A interaction and in the case of couplings to right-handed neutrinos (CT=-CT′) limits the tensor fraction to |CT/CA|2\u3c0.011 (95.5% C.L.). The measurement confirms the He6 result using a different nuclear system and employing modern ion-trapping techniques subject to different systematic uncertainties
The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array
This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from α sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy
- …