16 research outputs found

    Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells

    Get PDF
    Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin–mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI

    Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells

    Get PDF
    Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin–mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI

    A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium

    Get PDF
    Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth

    Manipulation of Rab GTPase Function by Intracellular Bacterial Pathogens

    No full text
    Summary: Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection

    Restricted Fusion of Chlamydia trachomatis Vesicles with Endocytic Compartments during the Initial Stages of Infection

    No full text
    The chlamydial inclusion occupies a unique niche within the eukaryotic cell that does not interact with endocytic compartments but instead is fusogenic with a subset of sphingomyelin-containing exocytic vesicles. The Chlamydia trachomatis inclusion acquires these distinctive properties by as early as 2 h postinfection as demonstrated by the ability to acquire sphingomyelin, endogenously synthesized from 6{N-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]caproylsphingosine} (C(6)-NBD-ceramide). The molecular mechanisms involved in transformation of the properties and cellular interactions of the inclusion are unknown except that they require early chlamydial transcription and translation. Although the properties of the inclusion are established by 2 h postinfection, the degree of interaction with endocytic pathways during the brief interval before fusogenicity with an exocytic pathway is established is unknown. Using a combination of confocal and electron microscopy to localize endocytic and lysosomal markers in C. trachomatis infected cells during the early stages of infection, we demonstrate a lack of these markers within the inclusion membrane or lumen of the inclusion to conclude that the nascent chlamydial inclusion is minimally interactive with endosomal compartments during this interval early in infection. Even when prevented from modifying the properties of the inclusion by incubation in the presence of protein synthesis inhibitors, vesicles containing elementary bodies are very slow to acquire lysosomal characteristics. These results imply a two-stage mechanism for chlamydial avoidance of lysosomal fusion: (i) an initial phase of delayed maturation to lysosomes due to an intrinsic property of elementary bodies and (ii) an active modification of the vesicular interactions of the inclusion requiring chlamydial protein synthesis

    Multiple Host Proteins That Function in Phosphatidylinositol-4-Phosphate Metabolism Are Recruited to the Chlamydial Inclusion â–¿

    No full text
    Chlamydiae replicate within a nonacidified vacuole, termed an inclusion. As obligate intracellular bacteria, chlamydiae actively modify their vacuole to exploit host signaling and trafficking pathways. Recently, we demonstrated that several Rab GTPases are actively targeted to the inclusion. To define the biological roles of inclusion localized Rab GTPases, we have begun to identify inclusion-localized Rab effectors. Here we demonstrate that oculocerebrorenal syndrome of Lowe protein 1 (OCRL1), a Golgi complex-localized phosphatidylinositol (PI)-5-phosphatase that binds to multiple Rab GTPases, localizes to chlamydial inclusions. By examining the intracellular localization of green fluorescent protein (GFP) fusion proteins that bind to unique phosphoinositide species, we also demonstrate that phosphatidylinositol-4-phosphate (PI4P), the product of OCRL1, is present at the inclusion membrane. Furthermore, two additional host proteins, Arf1, which together with PI4P mediates the recruitment of PI4P-binding proteins to the Golgi complex, and PI4KIIα, a major producer of Golgi complex-localized PI4P, also localize to chlamydial inclusions. Depletion of OCRL1, Arf1, or PI4KIIα by small interfering RNA (siRNA) decreases inclusion formation and the production of infectious progeny. Infectivity is further decreased in cells simultaneously depleted for all three host proteins, suggesting partially overlapping functions in infected cells. Collectively, these data demonstrate that Chlamydia species create a unique replication-competent vacuolar environment by modulating both the Rab GTPase and the PI composition of the chlamydial inclusion

    Rab GTPases Are Recruited to Chlamydial Inclusions in Both a Species-Dependent and Species-Independent Manner

    No full text
    Chlamydiae are obligate intracellular bacteria that replicate within an inclusion that is trafficked to the peri-Golgi region where it fuses with exocytic vesicles. The host and chlamydial proteins that regulate the trafficking of the inclusion have not been identified. Since Rab GTPases are key regulators of membrane trafficking, we examined the intracellular localization of several green fluorescent protein (GFP)-tagged Rab GTPases in chlamydia-infected HeLa cells. GFP-Rab4 and GFP-Rab11, which function in receptor recycling, and GFP-Rab1, which functions in endoplasmic reticulum (ER)-to-Golgi trafficking, are recruited to Chlamydia trachomatis, Chlamydia muridarum, and Chlamydia pneumoniae inclusions, whereas GFP-Rab5, GFP-Rab7, and GFP-Rab9, markers of early and late endosomes, are not. In contrast, GFP-Rab6, which functions in Golgi-to-ER and endosome-to-Golgi trafficking, is associated with C. trachomatis inclusions but not with C. pneumoniae or C. muridarum inclusions, while the opposite was observed for the Golgi-localized GFP-Rab10. Colocalization studies between transferrin and GFP-Rab11 demonstrate that a portion of GFP-Rab11 that localizes to inclusions does not colocalize with transferrin, which suggests that GFP-Rab11's association with the inclusion is not mediated solely through Rab11's association with transferrin-containing recycling endosomes. Finally, GFP-Rab GTPases remain associated with the inclusion even after disassembly of microtubules, which disperses recycling endosomes and the Golgi apparatus within the cytoplasm, suggesting a specific interaction with the inclusion membrane. Consistent with this, GFP-Rab11 colocalizes with C. trachomatis IncG at the inclusion membrane. Therefore, chlamydiae recruit key regulators of membrane trafficking to the inclusion, which may function to regulate the trafficking or fusogenic properties of the inclusion

    Rab35 is required for the survival of UPEC within BEC 5637.

    No full text
    <p><b>A.</b> BEC5637 cells were transfected with 100nM each of si Rab35 or non-targeting siRNA (si NT). 48h following knockdown, the cells were infected with UPEC at MOI 500. Intracellular bacterial load at different time points {4 h (invasion), 24 h and 48 h, was determined by lysing the cells in 0.1% Triton X-100 and plating on LB-agar as described in Materials and Methods. Results are expressed as bacterial load/ 2x10<sup>5</sup> cells. Immunoblotting was done to confirm the knock down efficiency of Rab35 siRNA (inset). <b>B.</b> Rab35 silencing does not enhance the efflux rate of UPEC from BEC-5637. BEC-5637 cells were transfected with 100nM each of si Rab35 or non-targeting siRNA (si NT). 48 h following knockdown, the cells were infected with UPEC at MOI 500. After gentamycin (100μg/ml) treatment, cells were washed in left in fresh culture medium containing 100mM methyl-D-mannopyranoside. At 24 h post infection, the culture medium was collected and plated for CFU counts as described in Materials and Methods. Results are expressed % exocytosis relative to siNT cells. <b>C.</b> Over expression of Rab35 protein leads to increase in bacterial load at 48 h post infection. BEC cells were transfected with GFP-Rab35 or control GFP vector for 24 h followed by UPEC infection (MOI 500) for another 48 h. Intracellular bacterial load was calculated as mentioned above. Results are expressed as bacterial load/ 2x10<sup>5</sup> cells. Immunoblotting was done to confirm the expression levels of Rab35 (inset). * represents <i>p</i> < .05; ** represents <i>p</i><0.01. Values shown represent mean ± standard deviation of results of three independent experiments.</p
    corecore