3 research outputs found

    Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens

    Get PDF
    The interest in the pre-harvest ultraviolet-B (UV-B) exposure of crops in indoor cultivation has grown consistently, though very little is known about its influence on the nutraceutical quality of microgreens. Flaxseeds constitute a valuable oilseed species, mostly appreciated for their nutritional properties and the presence of health-promoting compounds. Therefore, although scarcely studied, flaxseed sprouts and microgreens might constitute a high-quality food product to be included in a healthy diet. This study aims to unravel the effects of pre-harvest ultraviolet-B irradiation on the nutritional and nutraceutical quality of flaxseed sprouts and microgreens grown under artificial conditions. The UV-B irradiation decreased the biomass and stem length of microgreens. However, the content of total phenolics and flavonoids and the antioxidant capacity were strongly enhanced by the UV-B treatment in both sprouts and microgreens. Among photosynthetic pigments, chlorophyll a, violaxanthin, antheraxanthin, and lutein in sprouts were reduced by the treatment, while chlorophyll b increased in microgreens. In conclusion, our results showed that growing flaxseed sprouts and microgreens in controlled conditions with supplemental UV-B exposure might increase their nutritional and nutraceutical quality, as well as their antioxidant capacity, making them high-quality functional foods

    Foliar and root comparative metabolomics and phenolic profiling of Micro-Tom tomato (Solanum lycopersicum L.) plants associated with a gene expression analysis in response to short daily UV treatments

    Get PDF
    Tomato (Solanum lycopersicum L.) is globally recognised as a high-value crop both for commercial profit and nutritional benefits. In contrast to the extensive data regarding the changes in the metabolism of tomato fruit exposed to UV radiation, less is known about the foliar and root metabolome. Using an untargeted metabolomic approach through UHPLC-ESI-QTOF-MS analysis, we detected thousands of metabolites in the leaves (3000) and roots (2800) of Micro-Tom tomato plants exposed to 11 days of short daily UV radiation, applied only on the aboveground organs. Multivariate statistical analysis, such as OPLS-DA and volcano, were performed to allow a better understanding of the modifications caused by the treatment. Based on the unexpected modulation to the secondary metabolism, especially the phenylpropanoid pathway, of which compounds were down and up accumulated respectively in leaves and roots of treated plants, a phenolic profiling was carried out for both organs. The phenolic profile was associated with a gene expression analysis to check the transcription trend of genes involved in the UVR8 signalling pathway and the early steps of the phenolic biosynthesis. The retention of the modifications at metabolic and phenolic levels was also investigated 3 days after the UV treatment, showing a prolonged effect on the modulation once the UV treatment had ceased

    Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments

    Get PDF
    Tomato (Solanum lycopersicum L.) is globally recognised as a high-value crop both for commercial profit and nutritional benefits. In contrast to the extensive data regarding the changes in the metabolism of tomato fruit exposed to UV radiation, less is known about the foliar and root metabolome. Using an untargeted metabolomic approach through UHPLC-ESI-QTOF-MS analysis, we detected thousands of metabolites in the leaves (3000) and roots (2800) of Micro-Tom tomato plants exposed to 11 days of short daily UV radiation, applied only on the aboveground organs. Multivariate statistical analysis, such as OPLS-DA and volcano, were performed to allow a better understanding of the modifications caused by the treatment. Based on the unexpected modulation to the secondary metabolism, especially the phenylpropanoid pathway, of which compounds were down and up accumulated respectively in leaves and roots of treated plants, a phenolic profiling was carried out for both organs. The phenolic profile was associated with a gene expression analysis to check the transcription trend of genes involved in the UVR8 signalling pathway and the early steps of the phenolic biosynthesis. The retention of the modifications at metabolic and phenolic levels was also investigated 3 days after the UV treatment, showing a prolonged effect on the modulation once the UV treatment had ceased
    corecore