10 research outputs found
Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease
P2Y2 receptors and water transport in the kidney
The kidneys play a critical role in the maintenance of water homeostasis. This is achieved by the inherent architecture of the nephron along with the expression of various membrane transporters and channels that are responsible for the vectorial transport of salt and water. The collecting duct has become a focus of attention by virtue of its ability to transport water independent of solutes (free-water transport), and its apparent involvement in various water balance disorders. It was originally believed that the water transport capability of the collecting duct was solely under the influence of the circulating hormone, arginine vasopressin (AVP). However, during the past decade, locally produced autocrine and/or paracrine factors have emerged as potent modulators of transport of water by the collecting duct. Recently, much attention has been focused on the purinergic regulation of renal water transport. This review focuses on the role of the P2Y2 receptor, the predominant purinergic receptor expressed in the collecting duct, in the modulation of water transport in physiological and pathophysiological conditions, and its therapeutic potential as a drug target to treat water balance disorders in the clinic. Studies carried out by us and other investigators are unravelling potent interactions among AVP, prostanoid and purinergic systems in the medullary collecting duct, and the perturbations of these interactions in water balance disorders such as acquired nephrogenic diabetes insipidus. Future studies should address the potential therapeutic benefits of modulators of P2Y2 receptor signalling in water balance disorders, which are extremely prevalent in hospitalised patients irrespective of the underlying pathology
Effects of extracellular nucleotides on renal tubular solute transport
A range of P2 receptor subtypes has been identified along the renal tubule, in both apical and basolateral membranes. Furthermore, it has been shown that nucleotides are released from renal tubular cells, and that ectonucleotidases are present in several nephron segments. These findings suggest an autocrine/paracrine role for nucleotides in regulating tubular function. The present review catalogues the known actions of extracellular nucleotides on tubular solute transport. In the proximal tubule, there is firm evidence that stimulation of apical P2Y1 receptors inhibits bicarbonate reabsorption, whilst basolaterally applied ATP has the opposite effect. Clearance studies suggest that systemic diadenosine polyphosphates profoundly reduce proximal tubular fluid transport, through as yet unidentified P2 receptors. To date, only circumstantial evidence is available for an action of nucleotides on transport in the loop of Henle; and no studies have been made on native distal tubules, though observations in cell lines suggest an inhibitory effect on sodium, calcium and magnesium transport. The nephron segment most studied is the collecting duct. Apically applied nucleotides inhibit the activity of small-conductance K+ channels in mouse collecting duct, apparently through stimulation of P2Y2 receptors. There is also evidence, from cell lines and native tissue, that apically (and in some cases basolaterally) applied nucleotides inhibit sodium reabsorption. In mice pharmacological profiling implicates P2Y2 receptors; but in rats, the receptor subtype(s) responsible is/are unclear. Recent patch-clamp studies in rat collecting ducts implicate apical P2Y and P2X subtypes, with evidence for both inhibitory and stimulatory effects. Despite considerable progress, clarification of the physiological role of the tubular P2 receptor system remains some way off
P2 receptors in renal pathophysiology
Our knowledge and understanding of the P2 receptor signalling system in the kidney have increased significantly in the last ten years. The broad range of physiological roles proposed for this receptor system and the variety of P2 receptor subtypes found in the kidney suggest that any disturbance of function may contribute to several pathological processes. So far, most reports of a possible pathophysiological role for this system in the kidney have focussed on polycystic kidney disease, where abnormal P2 receptor signalling might be involved in cyst expansion and disease progression, and on the P2X7 receptor, a unique P2X subtype, which when activated enhances inflammatory cytokine release and production, and also cell death. Expression of this particular receptor is upregulated in some forms of chronic renal injury and inflammatory diseases. Further studies of adenosine triphosphate signalling and P2 receptor expression in renal disorders could provide us with novel insights into the role of these receptors in both normal and abnormal kidney function
Ectonucleotidases in the kidney
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high Km values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology
ATP as a mediator of macula densa cell signalling
Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true “sensor cells” since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E2 (PGE2) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells
ATP, P2 receptors and the renal microcirculation
Purinoceptors are rapidly becoming recognised as important regulators of tissue and organ function. Renal expression of P2 receptors is broad and diverse, as reflected by the fact that P2 receptors have been identified in virtually every major tubular/vascular element. While P2 receptor expression by these renal structures is recognised, the physiological functions that they serve remains to be clarified. Renal vascular P2 receptor expression is complex and poorly understood. Evidence suggests that different complements of P2 receptors are expressed by individual renal vascular segments. This unique distribution has given rise to the postulate that P2 receptors are important for renal vascular function, including regulation of preglomerular resistance and autoregulatory behaviour. More recent studies have also uncovered evidence that hypertension reduces renal vascular reactivity to P2 receptor stimulation in concert with compromised autoregulatory capability. This review will consolidate findings related to the role of P2 receptors in regulating renal microvascular function and will present areas of controversy related to the respective roles of ATP and adenosine in autoregulatory resistance adjustments