23 research outputs found

    I Going Away. I Going Home. : Austin Clarke\u27s Leaving this Island Place

    Get PDF
    Austin Clarke’s “Leaving This Island Place” is one of scores of Caribbean autobiographical works that focus on a bright, young, lower-class islander leaving his/her small island place and setting out on “Eldorado voyages.” The narrative of that journey away from home to Europe or Canada or the United States and the later efforts to return may be said to be the Caribbean story, as suggested in the subtitle of Wilfred Cartey’s study of Caribbean literature, Whispers from the Caribbean: I Going Away, I Going Home, which argues that while in Caribbean literature there is much movement away, there is also a body of literature in which “the notion of ‘away’ and images of movement out are replaced by images of return” (xvi). Traditionally, however, the first autobiographical works, such as George Lamming’s In the Castle of My Skin, V. S. Naipaul’s A House for Mr. Biswas, Merle Hodge’s Crick Crack, Monkey, Jamaica Kincaid’s Annie John, Michelle Cliff’s No Telephone to Heaven, Edwidge Danticat’s Breath, Eyes, Memory, and Elizabeth Nunez’s Beyond the Limbo Silence, have focused on the childhood in the Caribbean and the journey away—or at least the preparation for that journey. Such is the case with Clarke’s “Leaving This Island Place.

    On the constraints violation in forward dynamics of multibody systems

    Get PDF
    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian and the coordinate partitioning method.The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Geognostische Profile : nach eigenen Beobachtungen entworfen / Erste Abtheilung

    No full text
    von C. J. E. Freiherrn von Schwerin

    Numerical methods in vehicle system dynamics: state of the art and current developments

    No full text
    Robust and eïŹƒcient numerical methods are an essential prerequisite for the computer based dynamical analysis of engineering systems. In vehicle system dynamics, the methods and software tools from multibody system dynamics provide the integration platform for the analysis, simulation and optimization of the complex dynamical behaviour of vehicles and vehicle components and their interaction with hydraulic components, electronical devices and control structures. Based on the principles of classical mechanics, the modelling of vehicles and their components results in nonlinear systems of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs) of moderate dimension that describe the dynamical behaviour in the frequency range required and with a level of detail being characteristic of vehicle system dynamics. Most practical problems in this ïŹeld may be transformed to generic problems of numerical mathematics like systems of nonlinear equations in the (quasi-)static analysis and explicit ODEs or DAEs with a typical semi-explicit structure in the dynamical analysis. This transformation to mathematical standard problems allows to use sophisticated, freely available numerical software that is based on well approved numerical methods like the Newton-Raphson iteration for nonlinear equations or Runge-Kutta and linear multistep methods for ODE/DAE time integration. Substantial speed-ups of these numerical standard methods may be achieved exploiting some speciïŹc structure of the mathematical models in vehicle system dynamics. In the present paper, we follow this framework and start with some modelling aspects being relevant from the numerical viewpoint. The focus of the paper is on numerical methods for static and dynamic problems including software issues and a discussion which method ïŹts best for which class of problems. Adaptive components in state-of-the-art numerical software like stepsize and order control in time integration are introduced and illustrated by a well known benchmark problem from rail vehicle simulation. Over the last few decades, the complexity of high-end applications in vehicle system dynamics has frequently given a fresh impetus for substantial improvements of numerical methods and for the development of novel methods for new problem classes. In the present paper, we address three of these challenging problems of current interest that are today still beyond the mainstream of numerical mathematics: (i) Modelling and simulation of contact problems in multibody dynamics, (ii) Real-time capable numerical simulation techniques in vehicle system dynamics and iii) Modelling and time integration of multidisciplinary problems in system dynamics including co-simulation techniques
    corecore