81 research outputs found

    Orbital mapping of semiconducting perylenes on Cu(111)

    Get PDF
    Semiconducting O-doped polycyclic aromatic hydrocarbons constitute a class of molecules whose optoelectronic properties can be tailored by acting on the π-extension of the carbon-based frameworks and on the oxygen linkages. Although much is known about their photophysical and electrochemical properties in solution, their self-assembly interfacial behavior on solid substrates has remained unexplored so far. In this paper, we have focused our attention on the on-surface self-assembly of O-doped bi-perylene derivatives. Their ability to assemble in ordered networks on Cu(111) single-crystalline surfaces allowed a combination of structural, morphological, and spectroscopic studies. In particular, the exploitation of the orbital mapping methodology based on angle-resolved photoemission spectroscopy, with the support of scanning tunneling microscopy and low-energy electron diffraction, allowed the identification of both the electronic structure of the adsorbates and their geometric arrangement. Our multi-technique experimental investigation includes the structure determination from powder X-ray diffraction data for a specific compound and demonstrates that the electronic structure of such large molecular self-assembled networks can be studied using the reconstruction methods of molecular orbitals from photoemission data even in the presence of segregated chiral domains

    Chronic Methamphetamine Administration Causes Differential Regulation of Transcription Factors in the Rat Midbrain

    Get PDF
    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning

    Transcriptional and Epigenetic Substrates of Methamphetamine Addiction and Withdrawal: Evidence from a Long-Access Self-Administration Model in the Rat

    Get PDF

    Extinction-Dependent Alterations in Corticostriatal mGluR2/3 and mGluR7 Receptors following Chronic Methamphetamine Self-Administration in Rats

    Get PDF
    Methamphetamine (meth) is a highly addictive and widely abused psychostimulant. Repeated use of meth can quickly lead to dependence, and may be accompanied by a variety of persistent psychiatric symptoms and cognitive impairments. The neuroadaptations underlying motivational and cognitive deficits produced by chronic meth intake remain poorly understood. Altered glutamate neurotransmission within the prefrontal cortex (PFC) and striatum has been linked to both persistent drug-seeking and cognitive dysfunction. Therefore, the current study investigated changes in presynaptic mGluR receptors within corticostriatal circuitry after extended meth self-administration. Rats self-administered meth (or received yoked-saline) in 1 hr/day sessions for 7 days (short-access) followed by 14 days of 6 hrs/day (long-access). Rats displayed a progressive escalation of daily meth intake up to 6 mg/kg per day. After cessation of meth self-administration, rats underwent daily extinction or abstinence without extinction training for 14 days before being euthanized. Synaptosomes from the medial PFC, nucleus accumbens (NAc), and the dorsal striatum (dSTR) were isolated and labeled with membraneimpermeable biotin in order to measure surface mGluR2/3 and mGluR7 receptors. Extended access to meth selfadministration followed by abstinence decreased surface and total levels of mGluR2/3 receptors in the NAc and dSTR, while in the PFC, only a loss of surface mGluR2/3 and mGluR7 receptors was detected. Daily extinction trials reversed the downregulation of mGluR2/3 receptors in the NAc and dSTR and mGluR7 in the PFC, but downregulation of surfac

    Chronic methamphetamine self-administration dysregulates 5-HT2A and mGlu2 receptor expression in the rat prefrontal and perirhinal cortex: Comparison to chronic phencyclidine and MK-801

    No full text
    Chronic methamphetamine (meth) abuse often turns into a compulsive drug-taking disorder accompanied by persistent cognitive deficits and re-occurring psychosis. Possible common neurobiological substrates underlying meth-induced deficits and schizophrenia remain poorly understood. Serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors co-regulate psychosis-like behaviors and cognitive function in animals. Therefore, in the present study we examined the effects of chronic exposure to three different drugs known to produce persistent deficits in sensorimotor gating and cognition [meth, phencyclidine (PCP) and MK-801] on the expression of 5-HT2A and mGlu2 within the rat medial prefrontal cortex (PFC), dorsal hippocampus (dHPC) and perirhinal cortex (PRh). Adult male rats underwent 14 days of: (a) meth self-administration (6 h/day), (b) phencyclidine (PCP; 5 mg/kg, twice/day) administration, or (c) MK-801 (0.3 mg/kg, twice/day) administration. Seven days after the discontinuation of drug administration, tissues of interest were collected for protein expression analysis. We found that despite different pharmacological mechanism of action, chronic meth, PCP, and MK-801 similarly dysregulated 5-HT2A and mGlu2, as indicated by an increase in the 5-HT2A/mGlu2 expression ratio in the mPFC (all three tested drugs), PRh (meth and PCP), and dHPC (MK-801 only). Complementary changes in G-protein expression (increase in Gα and decrease in Gα) were also observed in the mPFC of meth animals. Finally, we found that 5-HT2A/mGlu2 cooperation can be mediated in part by the formation of the receptor heteromer in some, but not all cortical regions. In summary, these data suggest that a shift towards increased availability (and G-protein coupling) of cortical 5-HT2A vs. mGlu2 receptors may represent a common neurobiological mechanism underlying the emergence of psychosis and cognitive deficits observed in subjects with meth use disorder and schizophrenia

    Involvement of glutamate neurotransmission in the development of excessive wheel running in Lewis rats

    No full text
    Physical activities such as long-distance running can form a habit and might be related to drug-induced addictive behaviors. We investigated possible modulations of N-methyl-D-aspartate (NMDA) receptor subunits during voluntary wheel running in brain regions implicated in reward and addiction. It was observed that Lewis rats progressively increased their amount of daily running, reaching maximum levels of 4-6 km/day. After 3 weeks of running, mRNA levels coding for NR2A and NR2B subunits were increased in the ventral tegmental area, while only NR2A mRNA levels were found to be elevated in the frontal cortex. Long-term wheel running was also associated with increased binding of specific NMDA receptor antagonist [H-3]CGP39653 in the frontal cortex. Moreover, pharmacological inhibition of glutamate release by repeated administration of phenytoin (20 mg/kg IP for 21 days) significantly suppressed daily running. These results suggest that glutamatergic neurotransmission might be related to neurobiological mechanisms underlying the compulsive character of voluntary wheel running

    Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats

    No full text
    Lewis rats that are known to be addiction-prone, develop compulsive running if they have access to running wheels. The present experiments were aimed 1) to evaluate the activation of stress systems following chronic and acute voluntary wheel running in Lewis rats by measurement of hormone release and gene expression of neuropeptides related to hypothalamic-pituitary-adrenocortical (HPA) axis activity and 2) to test the hypothesis that wheel running as a combined model of addictive behavior and stress exposure is associated with modulation of ionotropic glutamate receptor subunits in the ventral tegmental area. Voluntary running for three weeks but not for one night resulted in a rise in plasma corticosterone and adrenocorticotropic hormone (ACTH) levels (p < 0.05) compared to those in control rats. Principal component analysis revealed the relation between POW gene expression in the intermediate pituitary and running rate. Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p < 0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (P < 0.05). Neither acute nor chronic wheel running influenced N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA levels in the ventral tegmental area. Thus, the present study revealed changes in AMPA receptor subunit gene expression in a reward-related brain structure as well as an activation of HPA axis in response to compulsive wheel running in Lewis rats. It may be suggested that hormones of HPA axis and glutamate receptors belong to the factors that substantiate higher vulnerability to addictive behavior. (C) 2003 Elsevier Science Ltd. All rights reserved

    Analysis of mGluR2/3 and mGluR7 surface vs. intracellular distribution in rat brain synaptosomes.

    No full text
    <p>(A) Rat brain atlas coordinates (adapted from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0034299#pone.0034299-Paxinos1" target="_blank">[77]</a>) used for tissue dissection and synaptosome preparation. (B) Representative immunoblots showing surface vs. intracellular distribution of mGluR2/3 and mGluR7 receptors (as well as marker proteins: calnexin, ERK1/2 and RasD1/AGS1) in synaptosomal fraction prepared from the dSTR. P2* - synaptosomal fraction resolved under strongly reducing conditions (100 mM DTT); T – total synaptosomal fraction after biotinylation resolved under weakly reducing conditions (>10 mM DTT); NB – non-biotinylated (intracellular) proteins; B – biotinylated (surface) proteins isolated by precipitation with streptavidin-agarose beads.</p
    corecore