2,842 research outputs found
Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates
The critical two-terminal conductance and the spatial fluctuations of
critical eigenstates are investigated for a disordered two dimensional model of
non-interacting electrons subject to spin-orbit scattering (Ando model). For
square samples, we verify numerically the relation between critical conductivity and
the fractal information dimension of the electron wave function, . Through a detailed numerical scaling analysis of the two-terminal
conductance we also estimate the critical exponent that
governs the quantum phase transition.Comment: IOP Latex, 7 figure
Preferential uptake of the non steroid anti-inflammatory drug diclofenac into inflamed tissues after a single oral dose in rats
BACKGROUND: Diclofenac is a nonsteroidal anti-inflammatory drug which is available as prescription (RX) and over-the-counter (OTC) medication for the systemic and topical treatment of painful and inflammatory conditions such as arthritis and back pain. This study was undertaken to investigate the distribution and retention of diclofenac and/or its metabolites in inflamed tissues, using the carrageenan-induced inflammation model and quantitative whole body autoradiography in rats. METHODS: [14C]diclofenac sodium was administrated as a single 2 mg/kg oral dose 1 h after injection of carrageenan into one front and one hind footpads and subcutaneously into the dorsum of the neck of rats. A control animal received saline injections. Three carrageenan-treated rats and one control rat were sacrificed at 1, 4, 8, and 24 h after [14C]diclofenac sodium administration (total of 4 rats/time point). The carcasses were immediately snap-frozen and prepared for cryosectioning. Lengthwise whole-body sections (40 microm thick), including all major tissues, were obtained from different levels across the body. The tissue concentrations of total radiolabeled components were determined using quantitative autoradioluminography. RESULTS: The radioactivity patterns demonstrated that diclofenac and/or its metabolites preferentially distributed into the inflamed tissues. In unharmed tissues the distribution was similar in control and treated animals. The exposure, based on the areas under the tissue concentration versus time (AUC(0-tlast)), was 26 and 53 fold higher in the inflamed neck and inflamed footpads of treated animals than in control rats; the exposures in unharmed tissues were similar in the treated and control rats, and the AUC(0-tlast) was 17 fold higher in the inflamed paws than in the non inflamed footpads of the carrageenan-treated rats. The higher exposure in the inflamed tissues may be explained partly to the fact that the elimination of total radiolabeled components from inflamed tissues (t(1/2) = 6 h) appeared lower than from the corresponding unharmed tissues (t(1/2) = 2 h). CONCLUSION: This animal study demonstrated that diclofenac and/or its metabolites were rapidly and preferentially taken up and retained in inflamed tissues. Although there were theoretical considerations that mildly acidic NSAID may show some preferential distribution in inflamed tissues there was no clear experimental proof for diclofenac until the present study
Critical conductance of two-dimensional chiral systems with random magnetic flux
The zero temperature transport properties of two-dimensional lattice systems
with static random magnetic flux per plaquette and zero mean are investigated
numerically. We study the two-terminal conductance and its dependence on
energy, sample size, and magnetic flux strength. The influence of boundary
conditions and of the oddness of the number of sites in the transverse
direction is also studied. We confirm the existence of a critical chiral state
in the middle of the energy band and calculate the critical exponent nu=0.35
+/- 0.03 for the divergence of the localization length. The sample averaged
scale independent critical conductance _c turns out to be a function of the
amplitude of the flux fluctuations whereas the variance of the respective
conductance distributions appears to be universal. All electronic states
outside of the band center are found to be localized.Comment: to appear in Phys. Rev.
A k-shell decomposition method for weighted networks
We present a generalized method for calculating the k-shell structure of
weighted networks. The method takes into account both the weight and the degree
of a network, in such a way that in the absence of weights we resume the shell
structure obtained by the classic k-shell decomposition. In the presence of
weights, we show that the method is able to partition the network in a more
refined way, without the need of any arbitrary threshold on the weight values.
Furthermore, by simulating spreading processes using the
susceptible-infectious-recovered model in four different weighted real-world
networks, we show that the weighted k-shell decomposition method ranks the
nodes more accurately, by placing nodes with higher spreading potential into
shells closer to the core. In addition, we demonstrate our new method on a real
economic network and show that the core calculated using the weighted k-shell
method is more meaningful from an economic perspective when compared with the
unweighted one.Comment: 17 pages, 6 figure
Multifractal properties of critical eigenstates in two-dimensional systems with symplectic symmetry
The multifractal properties of electronic eigenstates at the metal-insulator
transition of a two-dimensional disordered tight-binding model with spin-orbit
interaction are investigated numerically. The correlation dimensions of the
spectral measure and of the fractal eigenstate are
calculated and shown to be related by . The exponent
describing the energy correlations of the critical
eigenstates is found to satisfy the relation .Comment: 6 pages RevTeX; 3 uuencoded, gzipped ps-figures to appear in J. Phys.
Condensed Matte
Visual Attention and the Neuroimage Bias
Several highly-cited experiments have presented evidence suggesting that neuroimages may unduly bias laypeople’s judgments of scientific research. This finding has been especially worrisome to the legal community in which neuroimage techniques may be used to produce evidence of a person’s mental state. However, a more recent body of work that has looked directly at the independent impact of neuroimages on layperson decision-making (both in legal and more general arenas), and has failed to find evidence of bias. To help resolve these conflicting findings, this research uses eye tracking technology to provide a measure of attention to different visual representations of neuroscientific data. Finding an effect of neuroimages on the distribution of attention would provide a potential mechanism for the influence of neuroimages on higher-level decisions. In the present experiment, a sample of laypeople viewed a vignette that briefly described a court case in which the defendant’s actions might have been explained by a neurological defect. Accompanying these vignettes was either an MRI image of the defendant’s brain, or a bar graph depicting levels of brain activity–two competing visualizations that have been the focus of much of the previous research on the neuroimage bias. We found that, while laypeople differentially attended to neuroimagery relative to the bar graph, this did not translate into differential judgments in a way that would support the idea of a neuroimage bias
Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling
The energy level statistics of 2D electrons with spin-orbit scattering are
considered near the disorder induced metal-insulator transition. Using the Ando
model, the nearest-level-spacing distribution is calculated numerically at the
critical point. It is shown that the critical spacing distribution is size
independent and has a Poisson-like decay at large spacings as distinct from the
Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed
Matter, in prin
Self-Consistent Second Order Perturbation Theory for the Hubbard Model in Two Dimensions
We apply self-consistent second order perturbation theory (SCSOPT) with
respect to the on-site repulsive interaction U to study the Hubbard model in
two dimensions. We investigate single particle properties of the model over the
entire doping range at zero temperature. It is shown that as doping decreases
toward half-filling -mass enhancement factor increases, while k-mass
enhancement factor decreases. The increase in -mass enhancement factor
is larger than the decrease in k-mass enhancement factor, so that total-mass is
larger than that in the non-interacting case. When particle number density per
unit cell n is given by 0.64<n<1.0 interaction enhances anisotropy of the Fermi
surface, whereas at lower densities n<0.64 interaction suppresses anisotropy of
it. Due to the decrease in k-mass enhancement factor the density of states
(DOS) at the Fermi level is suppressed. It is possible to understand the
results within the framework of the weak coupling Fermi liquid theory.Comment: 8 pages, 12 embedded EPS figures, to appear in J. Phys. Soc. Jpn.
Vol. 68-3 (1999
- …