2,829 research outputs found

    Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates

    Full text link
    The critical two-terminal conductance gcg_c and the spatial fluctuations of critical eigenstates are investigated for a disordered two dimensional model of non-interacting electrons subject to spin-orbit scattering (Ando model). For square samples, we verify numerically the relation σc=1/[2π(2−D(1))]e2/h\sigma_c=1/[2\pi(2-D(1))] e^2/h between critical conductivity σc=gc=(1.42±0.005)e2/h\sigma_c=g_c=(1.42\pm 0.005) e^2/h and the fractal information dimension of the electron wave function, D(1)=1.889±0.001D(1)=1.889\pm 0.001. Through a detailed numerical scaling analysis of the two-terminal conductance we also estimate the critical exponent ν=2.80±0.04\nu=2.80\pm 0.04 that governs the quantum phase transition.Comment: IOP Latex, 7 figure

    Preferential uptake of the non steroid anti-inflammatory drug diclofenac into inflamed tissues after a single oral dose in rats

    Get PDF
    BACKGROUND: Diclofenac is a nonsteroidal anti-inflammatory drug which is available as prescription (RX) and over-the-counter (OTC) medication for the systemic and topical treatment of painful and inflammatory conditions such as arthritis and back pain. This study was undertaken to investigate the distribution and retention of diclofenac and/or its metabolites in inflamed tissues, using the carrageenan-induced inflammation model and quantitative whole body autoradiography in rats. METHODS: [14C]diclofenac sodium was administrated as a single 2 mg/kg oral dose 1 h after injection of carrageenan into one front and one hind footpads and subcutaneously into the dorsum of the neck of rats. A control animal received saline injections. Three carrageenan-treated rats and one control rat were sacrificed at 1, 4, 8, and 24 h after [14C]diclofenac sodium administration (total of 4 rats/time point). The carcasses were immediately snap-frozen and prepared for cryosectioning. Lengthwise whole-body sections (40 microm thick), including all major tissues, were obtained from different levels across the body. The tissue concentrations of total radiolabeled components were determined using quantitative autoradioluminography. RESULTS: The radioactivity patterns demonstrated that diclofenac and/or its metabolites preferentially distributed into the inflamed tissues. In unharmed tissues the distribution was similar in control and treated animals. The exposure, based on the areas under the tissue concentration versus time (AUC(0-tlast)), was 26 and 53 fold higher in the inflamed neck and inflamed footpads of treated animals than in control rats; the exposures in unharmed tissues were similar in the treated and control rats, and the AUC(0-tlast) was 17 fold higher in the inflamed paws than in the non inflamed footpads of the carrageenan-treated rats. The higher exposure in the inflamed tissues may be explained partly to the fact that the elimination of total radiolabeled components from inflamed tissues (t(1/2) = 6 h) appeared lower than from the corresponding unharmed tissues (t(1/2) = 2 h). CONCLUSION: This animal study demonstrated that diclofenac and/or its metabolites were rapidly and preferentially taken up and retained in inflamed tissues. Although there were theoretical considerations that mildly acidic NSAID may show some preferential distribution in inflamed tissues there was no clear experimental proof for diclofenac until the present study

    Finding cool subdwarfs using a V-J reduced proper-motion diagram: Stellar parameters for 91 candidates

    Full text link
    We present the results of a search for cool subdwarfs for which our candidates were drawn from a V-J reduced proper-motion diagram constructed by Salim & Gould (2002). Kinematic (U, V, and W) and self-consistent stellar parameters (Teff, log g, [Fe/H], and V_t) are derived for 91 candidate subdwarfs based on high resolution spectra. The observed stars span 3900K < Teff < 6200K and -2.63 < [Fe/H] < 0.25 including only 3 giants (log g < 4.0). Of the sample, 77 stars have MgH lines present in their spectra. With more than 56% of our candidate subdwarfs having [Fe/H] < -1.5, we show that the V-J reduced proper-motion diagram readily identifies metal-poor stars.Comment: PASP (in press

    Self-propelled particles with fluctuating speed and direction of motion

    Get PDF
    We study general aspects of active motion with fluctuations in the speed and the direction of motion in two dimensions. We consider the case in which fluctuations in the speed are not correlated to fluctuations in the direction of motion, and assume that both processes can be described by independent characteristic time-scales. We show the occurrence of a complex transient that can exhibit a series of alternating regimes of motion, for two different angular dynamics which correspond to persistent and directed random walks. We also show additive corrections to the diffusion coefficient. The characteristic time-scales are also exposed in the velocity autocorrelation, which is a sum of exponential forms.Comment: to appear in Phys. Rev. Let

    Multifractal properties of critical eigenstates in two-dimensional systems with symplectic symmetry

    Full text link
    The multifractal properties of electronic eigenstates at the metal-insulator transition of a two-dimensional disordered tight-binding model with spin-orbit interaction are investigated numerically. The correlation dimensions of the spectral measure D~2\widetilde{D}_{2} and of the fractal eigenstate D2D_{2} are calculated and shown to be related by D2=2D~2D_{2}=2\widetilde{D}_{2}. The exponent η=0.35±0.05\eta=0.35\pm 0.05 describing the energy correlations of the critical eigenstates is found to satisfy the relation η=2−D2\eta=2-D_{2}.Comment: 6 pages RevTeX; 3 uuencoded, gzipped ps-figures to appear in J. Phys. Condensed Matte

    A k-shell decomposition method for weighted networks

    Full text link
    We present a generalized method for calculating the k-shell structure of weighted networks. The method takes into account both the weight and the degree of a network, in such a way that in the absence of weights we resume the shell structure obtained by the classic k-shell decomposition. In the presence of weights, we show that the method is able to partition the network in a more refined way, without the need of any arbitrary threshold on the weight values. Furthermore, by simulating spreading processes using the susceptible-infectious-recovered model in four different weighted real-world networks, we show that the weighted k-shell decomposition method ranks the nodes more accurately, by placing nodes with higher spreading potential into shells closer to the core. In addition, we demonstrate our new method on a real economic network and show that the core calculated using the weighted k-shell method is more meaningful from an economic perspective when compared with the unweighted one.Comment: 17 pages, 6 figure

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling

    Full text link
    The energy level statistics of 2D electrons with spin-orbit scattering are considered near the disorder induced metal-insulator transition. Using the Ando model, the nearest-level-spacing distribution is calculated numerically at the critical point. It is shown that the critical spacing distribution is size independent and has a Poisson-like decay at large spacings as distinct from the Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed Matter, in prin

    Visual Attention and the Neuroimage Bias

    Get PDF
    Several highly-cited experiments have presented evidence suggesting that neuroimages may unduly bias laypeople’s judgments of scientific research. This finding has been especially worrisome to the legal community in which neuroimage techniques may be used to produce evidence of a person’s mental state. However, a more recent body of work that has looked directly at the independent impact of neuroimages on layperson decision-making (both in legal and more general arenas), and has failed to find evidence of bias. To help resolve these conflicting findings, this research uses eye tracking technology to provide a measure of attention to different visual representations of neuroscientific data. Finding an effect of neuroimages on the distribution of attention would provide a potential mechanism for the influence of neuroimages on higher-level decisions. In the present experiment, a sample of laypeople viewed a vignette that briefly described a court case in which the defendant’s actions might have been explained by a neurological defect. Accompanying these vignettes was either an MRI image of the defendant’s brain, or a bar graph depicting levels of brain activity–two competing visualizations that have been the focus of much of the previous research on the neuroimage bias. We found that, while laypeople differentially attended to neuroimagery relative to the bar graph, this did not translate into differential judgments in a way that would support the idea of a neuroimage bias

    Self-Consistent Second Order Perturbation Theory for the Hubbard Model in Two Dimensions

    Full text link
    We apply self-consistent second order perturbation theory (SCSOPT) with respect to the on-site repulsive interaction U to study the Hubbard model in two dimensions. We investigate single particle properties of the model over the entire doping range at zero temperature. It is shown that as doping decreases toward half-filling ω\omega-mass enhancement factor increases, while k-mass enhancement factor decreases. The increase in ω\omega-mass enhancement factor is larger than the decrease in k-mass enhancement factor, so that total-mass is larger than that in the non-interacting case. When particle number density per unit cell n is given by 0.64<n<1.0 interaction enhances anisotropy of the Fermi surface, whereas at lower densities n<0.64 interaction suppresses anisotropy of it. Due to the decrease in k-mass enhancement factor the density of states (DOS) at the Fermi level is suppressed. It is possible to understand the results within the framework of the weak coupling Fermi liquid theory.Comment: 8 pages, 12 embedded EPS figures, to appear in J. Phys. Soc. Jpn. Vol. 68-3 (1999
    • …
    corecore