9 research outputs found

    The NEID precision radial velocity spectrometer: Commissioning of the Port Adapter

    Get PDF
    In October 2019, the NEID instrument (PI Suvrath Mahadevan, PSU) was delivered to the WIYN 3.5 m Telescope at Kitt Peak National Observatory. Commissioning began shortly after delivery, but was paused due to a COVID-19 imposed observatory shutdown in March 2020. The observatory has recently reopened and NEID commissioning has resumed. NEID is an optical (380-930 nm), fiber-fed, precision Doppler radial velocity system developed as part of the NN-EXPLORE partnership. While the spectrometer and calibration system are maintained in a highly controlled environment on the basement level of the WIYN, the NEID Port Adapter mounts directly to a bent-Cassegrain port on the telescope and is responsible for precisely and stably placing target light on the science fibers. Here we present a brief overview of the as-built Port Adapter and its sub-components. We then discuss preliminary on-sky performance compared to requirements as well as next steps as we complete commissioning

    The warm Neptune GJ 3470b has a polar orbit

    Get PDF
    The warm Neptune GJ 3470b transits a nearby (d = 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of λ=98−12+15◦ and a vsini=0.85−0.33+0.27kms−1 . Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of ψ=95−8+9◦ , revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of γ̇=−0.0022±0.0011ms−1day−1 over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere
    corecore