1,138 research outputs found

    Editorial

    Get PDF

    Editorial

    Get PDF

    Editorial

    Get PDF

    Editorial

    Get PDF

    Editorial

    Get PDF

    Introduction to magnetic resonance methods in photosynthesis

    Get PDF
    Electron paramagnetic resonance (EPR) and, more recently, solid-state nuclear magnetic resonance (NMR) have been employed to study photosynthetic processes, primarily related to the light-induced charge separation. Information obtained on the electronic structure, the relative orientation of the cofactors, and the changes in structure during these reactions should help to understand the efficiency of light-induced charge separation. A short introduction to the observables derived from magnetic resonance experiments is given. The relation of these observables to the electronic structure is sketched using the nitroxide group of spin labels as a simple example

    A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

    Get PDF
    Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage

    The Minimal Domain of Adipose Triglyceride Lipase (ATGL) Ranges until Leucine 254 and Can Be Activated and Inhibited by CGI-58 and G0S2, Respectively

    Get PDF
    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated

    Interleukin‐6 initiates muscle‐ and adipose tissue wasting in a novel C57BL/6 model of cancer‐associated cachexia

    Get PDF
    BACKGROUND: Cancer‐associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease‐specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic‐ and non‐cachexigenic tumours. METHODS: MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10–11‐week‐old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical‐, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and ‐composition, food‐ and water intake, locomotor activity, O(2) consumption, CO(2) production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high‐resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose‐ and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin‐6 (Il‐6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS: CHX207, but not MCA207‐tumour‐bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL‐6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (−47%, P ≤ 0.0001), skeletal muscle wasting (−18%, P ≤ 0.001), and body weight reduction (−13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and ‐synthesis combined with increased lipolysis but was not associated with elevated beta‐adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (−21.8%, P ≤ 0.001), increased catabolic‐ and reduced anabolic signalling. Deletion of IL‐6 from CHX207 cancer cells completely protected CHX207(IL6KO)‐tumour‐bearing mice from CAC. CONCLUSIONS: In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non‐cachectic MCA207‐tumour‐bearing mice. IL‐6 represents an essential trigger for CAC development in CHX207‐tumour‐bearing mice

    Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation

    Get PDF
    SummaryAdipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes
    • …
    corecore