3 research outputs found

    Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry

    Get PDF
    Thyroid volumetry is crucial in the diagnosis, treatment, and monitoring of thyroid diseases. However, conventional thyroid volumetry with 2D ultrasound is highly operator-dependent. This study compares 2D and tracked 3D ultrasound with an automatic thyroid segmentation based on a deep neural network regarding inter- and intraobserver variability, time, and accuracy. Volume reference was MRI. 28 healthy volunteers (24—50 a) were scanned with 2D and 3D ultrasound (and by MRI) by three physicians (MD 1, 2, 3) with different experience levels (6, 4, and 1 a). In the 2D scans, the thyroid lobe volumes were calculated with the ellipsoid formula. A convolutional deep neural network (CNN) automatically segmented the 3D thyroid lobes. 26, 6, and 6 random lobe scans were used for training, validation, and testing, respectively. On MRI (T1 VIBE sequence) the thyroid was manually segmented by an experienced MD. MRI thyroid volumes ranged from 2.8 to 16.7ml (mean 7.4, SD 3.05). The CNN was trained to obtain an average Dice score of 0.94. The interobserver variability comparing two MDs showed mean differences for 2D and 3D respectively of 0.58 to 0.52ml (MD1 vs. 2), −1.33 to −0.17ml (MD1 vs. 3) and −1.89 to −0.70ml (MD2 vs. 3). Paired samples t-tests showed significant differences for 2D (p = .140, p = .002 and p = .002) and none for 3D (p = .176, p = .722 and p = .057). Intraobsever variability was similar for 2D and 3D ultrasound. Comparison of ultrasound volumes and MRI volumes showed a significant difference for the 2D volumetry of all MDs (p = .002, p = .009, p <.001), and no significant difference for 3D ultrasound (p = .292, p = .686, p = 0.091). Acquisition time was significantly shorter for 3D ultrasound. Tracked 3D ultrasound combined with a CNN segmentation significantly reduces interobserver variability in thyroid volumetry and increases the accuracy of the measurements with shorter acquisition times

    Development and external validation of a multivariable [68^{68}Ga]Ga-PSMA-11 PET-based prediction model for lymph node involvement in men with intermediate or high-risk prostate cancer

    Full text link
    PURPOSE To develop and evaluate a lymph node invasion (LNI) prediction model for men staged with [68^{68}Ga]Ga-PSMA-11 PET. METHODS A consecutive sample of intermediate to high-risk prostate cancer (PCa) patients undergoing [68^{68}Ga]Ga-PSMA-11 PET, extended pelvic lymph node dissection (ePLND), and radical prostatectomy (RP) at two tertiary referral centers were retrospectively identified. The training cohort comprised 173 patients (treated between 2013 and 2017), the validation cohort 90 patients (treated between 2016 and 2019). Three models for LNI prediction were developed and evaluated using cross-validation. Optimal risk-threshold was determined during model development. The best performing model was evaluated and compared to available conventional and multiparametric magnetic resonance imaging (mpMRI)-based prediction models using area under the receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis (DCA). RESULTS A combined model including prostate-specific antigen, biopsy Gleason grade group, [68^{68}Ga]Ga Ga-PSMA-11 positive volume of the primary tumor, and the assessment of the [68^{68}Ga]Ga-PSMA-11 report N-status yielded an AUC of 0.923 (95% CI 0.863-0.984) in the external validation. Using a cutoff of  ≥ 17%, 44 (50%) ePLNDs would be spared and LNI missed in one patient (4.8%). Compared to conventional and MRI-based models, the proposed model showed similar calibration, higher AUC (0.923 (95% CI 0.863-0.984) vs. 0.700 (95% CI 0.548-0.852)-0.824 (95% CI 0.710-0.938)) and higher net benefit at DCA. CONCLUSIONS Our results indicate that information from [68^{68}Ga]Ga-PSMA-11 may improve LNI prediction in intermediate to high-risk PCa patients undergoing primary staging especially when combined with clinical parameters. For better LNI prediction, future research should investigate the combination of information from both PSMA PET and mpMRI for LNI prediction in PCa patients before RP

    Genomic and transcriptomic heterogeneity of colorectal tumours arising in Lynch syndrome

    No full text
    Colorectal cancer (CRC) arising in Lynch syndrome (LS) comprises tumours with constitutional mutations in DNA mismatch repair genes. There is still a lack of whole-genome and transcriptome studies of LS-CRC to address questions about similarities and differences in mutation and gene expression characteristics between LS-CRC and sporadic CRC, about the molecular heterogeneity of LS-CRC, and about specific mechanisms of LS-CRC genesis linked to dysfunctional mismatch repair in LS colonic mucosa and the possible role of immune editing. Here, we provide a first molecular characterization of LS tumours and of matched tumour-distant reference colonic mucosa based on whole-genome DNA-sequencing and RNA-sequencing analyses. Our data support two subgroups of LS-CRCs, G1 and G2, whereby G1 tumours show a higher number of somatic mutations, a higher amount of microsatellite slippage, and a different mutation spectrum. The gene expression phenotypes support this difference. Reference mucosa of G1 shows a strong immune response associated with the expression of HLA and immune checkpoint genes and the invasion of CD4+ T cells. Such an immune response is not observed in LS tumours, G2 reference and normal (non-Lynch) mucosa, and sporadic CRC. We hypothesize that G1 tumours are edited for escape from a highly immunogenic microenvironment via loss of HLA presentation and T-cell exhaustion. In contrast, G2 tumours seem to develop in a less immunogenic microenvironment where tumour-promoting inflammation parallels tumourigenesis. Larger studies on non-neoplastic mucosa tissue of mutation carriers are required to better understand the early phases of emerging tumours. Copyright (C) 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore