1,501 research outputs found

    Green Performance: The Future of Performance-Based Executive Compensation?

    Get PDF
    Although sustainability performance appears to be a logical extension of the traditional performance-based compensation model, the effect and result of such performance remains unclear and untested across the market. The adoption of broad-based sustainability performance measures may be dangerous because, often times, these measures are tailored to the corporation and may decrease total shareholder return in the short run. Regardless of whether or not the corporation decides to introduce these measures, their effect on total shareholder return and other corporate interests requires an individualized analysis. Part II of this Comment discusses the current state of executive compensation, including the use of peer group benchmarking in establishing executive pay and the use of performance-based compensation. This overview will describe the characteristics of a peer group and considerations that compensation consultants evaluate before they select peer groups. Part II also discusses how performance-based compensation became prominent, the basic reasoning for performance-based compensation, and other tax related reasons for adopting performance-based compensation under Section 162(m) of the Internal Revenue Code. Part III, the primary purpose of this Comment, examines sustainability in corporate America. Specifically, this section defines “sustainability” and “sustainability performance measures,” and discusses how corporations currently embrace sustainability through an industry sample featuring three uniquely situated corporations. Finally, Part III concludes by examining the primary concern with embracing sustainability performance measures: accurate measurement. Part IV engages in a broad-based examination of corporate social responsibility concerns that must be vetted before introducing corporate sustainability measures. This section examines the Shareholder Primacy View, as advocated by prominent free-market economist Milton Friedman, and the Triple Bottom Line approach. This section concludes by reviewing the emerging theory of the Sustainability Model of Corporate Social Responsibility. Part V offers concluding reflections on the individualized considerations that must be discussed before introducing sustainability performance measures into a corporation’s executive compensation plan

    Whispering Gallery Mode Resonator Stabilized Narrow Linewidth Fiber Loop Laser

    Full text link
    We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the experimental spectral resolution. A linear increase in output power and a red-shift of the lasing mode were also observed with increasing pump power. Its potential application is also discussed

    Polarization properties and dispersion relations for spiral resonances of a dielectric rod

    Full text link
    Dielectric microcavities based on cylindrical and deformed cylindrical shapes have been employed as resonators for microlasers. Such systems support spiral resonances with finite momentum along the cylinder axis. For such modes the boundary conditions do not separate and simple TM and TE polarization states do not exist. We formulate a theory for the dispersion relations and polarization properties of such resonances for an infinite dielectric rod of arbitrary cross-section and then solve for these quantities for the case of a circular cross-section (cylinder). Useful analytic formulas are obtained using the eikonal (Einstein-Brillouin-Keller) method which are shown to be excellent approximations to the exact results from the wave equation. The major finding is that the polarization of the radiation emitted into the far-field is linear up to a polarization critical angle (PCA) at which it changes to elliptical. The PCA always lies between the Brewster and total-internal-reflection angles for the dielectric, as is shown by an analysis based on the Jones matrices of the spiraling rays.Comment: submitted to JOSA

    Optomechanical position detection enhanced by de-amplification using intracavity squeezing

    Full text link
    It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal to noise ratio works by de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. This enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum limited detectors based on optomechanical devices. Our approach can be straightforwardly extended to Quantum Non Demolition (QND) qubit detection.Comment: references added, slight change

    Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism

    Full text link
    Optical whispering gallery mode (WGM) resonators are a powerful and versatile tool used in many branches of science. Fine tuning of the central frequency and line width of individual resonances is however desirable in a number of applications including frequency conversion, optical communications and efficient light-matter coupling. To this end we present a detailed theoretical analysis of dielectric tuning of WGMs supported in axisymmetric resonators. Using the Bethe-Schwinger equation and adopting an angular spectrum field representation we study the resonance shift and mode broadening of high QQ WGMs when a planar dielectric substrate is brought close to the resonator. Particular focus is given to use of a uniaxial substrate with an arbitrarily aligned optic axis. Competing red and blue resonance shifts (30\sim 30 MHz), deriving from generation of a near field material polarisation and back action from the radiation continuum respectively, are found. Anomalous resonance shifts can hence be observed depending on the substrate material, whereas mode broadening on the order of 50\sim 50 MHz can also be simply realised. Furthermore, polarisation selective coupling with extinction ratios of >104> 10^4 can be achieved when the resonator and substrate are of the same composition and their optic axes are chosen correctly. Double refraction and properties of out-coupled beams are also discussed

    An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane

    Full text link
    We present a numerically improved multipole formulation for the calculation of resonances of multiple disks located at arbitrary positions in a 2-d plane, and suitable for the accurate computation of the resonances of large numbers of disks and of high-wavenumber eigenstates. Using a simple reformulation of the field expansions and boundary conditions, we are able to transform the multipole formalism into a linear eigenvalue problem, for which fast and accurate methods are available. Observing that the motion of the eigenvalues in the complex plane is analytic with respect to a two parameter family, we present a numerical algorithm to compute a range of multiple-disk resonances and field distributions using only two diagonalizations. This method can be applied to photonic molecules, photonic crystals, photonic crystal fibers, and random lasers. © 2009 Optical Society of America

    Resonant Electro-Optic Frequency Comb

    Full text link
    High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost

    Experimental characterization of an uniaxial angle cut whispering gallery mode resonator

    Full text link
    The usual configuration of uniaxial whispering gallery mode resonators is a disk shaped geometry where the optic axis points along the symmetry axis, a so called z-cut resonator. Recently x-cut resonators, where the optic axis lies in the equatorial plane, became of interest as they enable extremely broadband second harmonic generation. In this paper we report on the properties of a more generalized system, the so called angle-cut resonator, where the optic axis exhibits an arbitrary angle against the symmetry axis. We show experimentally that the modal structure and quality factors are similar to common resonators but that the polarization properties differ quite significantly: due to the asymmetry the polarization depends on the equatorial position and is, in general, elliptical
    corecore