10 research outputs found
Prediction of Peptide Reactivity with Human IVIg through a Knowledge-Based Approach
The prediction of antibody-protein (antigen) interactions is very difficult due to the huge variability that characterizes the structure of the antibodies. The region of the antigen bound to the antibodies is called epitope. Experimental data indicate that many antibodies react with a panel of distinct epitopes (positive reaction). The Challenge 1 of DREAM5 aims at understanding whether there exists rules for predicting the reactivity of a peptide/epitope, i.e., its capability to bind to human antibodies. DREAM 5 provided a training set of peptides with experimentally identified high and low reactivities to human antibodies. On the basis of this training set, the participants to the challenge were asked to develop a predictive model of reactivity. A test set was then provided to evaluate the performance of the model implemented so far
Distribution and diversity of phytate-mineralizing bacteria
Phytate, the most abundant organic phosphorus compound in soil, dominates the biotic phosphorus input from terrestrial runoffs into aquatic systems. Microbial mineralization of phytate by phytases is a key process for recycling phosphorus in the biosphere. Bioinformatic studies were carried out on microbial genomes and environmental metagenomes in the NCBI and the CAMERA databases to determine the distribution of the four known classes of phytase in the microbial world. The Β-propeller phytase is the only phytase family that can be found in aquatic environments and it is also distributed in soil and plant bacteria. The Β-propeller phytase-like genes can be classified into several subgroups based on their domain structure and the positions of their conserved cysteine residues. Analysis of the genetic contexts of these subgroups showed that Β-propeller phytase genes exist either as an independent gene or are closely associated with a TonB-dependent receptor-like gene in operons, suggesting that these two genes are functionally linked and thus may play an important role in the cycles of phosphorus and iron. Our work suggests that Β-propeller phytases play a major role in phytate-phosphorus cycling in both soil and aquatic microbial communities. © 2007 International Society for Microbial Ecology All rights reserved.link_to_subscribed_fulltex
Protein Structure Modeling with MODELLER.
Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In the following chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences