382 research outputs found

    Annual variation of litter size and offspring size in a viviparous skink

    Get PDF
    This study examines variation in reproductive characteristics over 2 yr in the viviparous Australian skink Eulamprus tympanum. Litter size (xBAR = 2.8) was positively related to female body size in both years of this study, and there was no variation in the form of this relationship between years. However, offspring size, and the relationship of offspring size to female body size varied from 1989 to 1990. In most other species of lizard that have been examined, offspring size either does not change from year to year or changes concurrently with changes in clutch (litter) size. Here I suggest that because litter size is small, and additional offspring apparently cannot be produced without substantial growth by the female (almost-equal-to-11% of body length), the response to exogenous variables affecting reproductive investment may be mostly in terms of offspring size

    Annual variation of litter size and offspring size in a viviparous skink

    Get PDF
    This study examines variation in reproductive characteristics over 2 yr in the viviparous Australian skink Eulamprus tympanum. Litter size (xBAR = 2.8) was positively related to female body size in both years of this study, and there was no variation in the form of this relationship between years. However, offspring size, and the relationship of offspring size to female body size varied from 1989 to 1990. In most other species of lizard that have been examined, offspring size either does not change from year to year or changes concurrently with changes in clutch (litter) size. Here I suggest that because litter size is small, and additional offspring apparently cannot be produced without substantial growth by the female (almost-equal-to-11% of body length), the response to exogenous variables affecting reproductive investment may be mostly in terms of offspring size

    A simple method to predict body temperature of small reptiles from environmental temperature

    Get PDF
    To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature

    The response of an arboreal mammal to livestock grazing is habitat dependant

    Get PDF
    Inappropriate livestock grazing is implicated in the decline of vertebrate fauna species globally. Faunal responses to grazing can interact with the vegetation community in which they occur. We measured the response of an arboreal marsupial, the common brushtail possum (Trichosurus vulpecula vulpecula) to different cattle grazing strategies and vegetation types, and examined whether micro-habitat selection is driving this response. We hypothesised that where arboreal habitat is intact, brushtail possums would be resistant to the impacts of heavy grazing. We conducted a mark-recapture survey among four grazing treatments and in two vegetation types (Box and Ironbark), at a 20-year grazing trial in northern Australia. We found that brushtail possums were resistant to the impact of heavy grazing in both vegetation types, but preferred the heavy grazing treatment in the Box vegetation type. Complex arboreal habitat and low ground cover was preferred, and high grass cover and low tree species richness avoided. Most individuals exclusively used one vegetation type, with few using both, suggesting a 'matrix' vegetation between the Box and Ironbark may be creating a movement barrier. Vegetation type should provide a context for determining the benefits to arboreal wildlife of adopting a particular grazing management strategy

    Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem

    Get PDF
    Typically, factors influencing predation risk are viewed only from the perspective of predators or prey populations but few studies have examined predation risk in the context of a food web. We tested two competing hypotheses regarding predation: (1) predation risk is dependent on predator density; and (2) predation risk is dependent on the availability of alternative prey sources. We use an empirical, multi-level, tropical food web (birds–lizards–invertebrates) and a mensurative experiment (seasonal fluctuations in abundance and artificial lizards to estimate predation risk) to test these hypotheses. Birds were responsible for the majority of attacks on artificial lizards and were more abundant in the wet season. Artificial lizards were attacked more frequently in the dry than the wet season despite a greater abundance of birds in the wet season. Lizard and invertebrate (alternative prey) abundances showed opposing trends; lizards were more abundant in the dry while invertebrates were more abundant in the wet season. Predatory birds attacked fewer lizards when invertebrate prey abundance was highest, and switched to lizard prey when invertebrate abundance reduced, and lizard abundance was greatest. Our study suggests predation risk is not predator density-dependent, but rather dependent on the abundance of invertebrate prey, supporting the alternative prey hypothesis

    Using citizen science to test for acoustic niche partitioning in frogs

    Get PDF
    The acoustic niche hypothesis proposes that to avoid interference with breeding signals, vocal species should evolve to partition acoustic space, minimising similarity with co-occurring signals. Tests of the acoustic niche hypothesis are typically conducted using a single assemblage, with mixed outcomes, but if the process is evolutionarily important, a pattern of reduced acoustic competition should emerge, on average, over many communities. Using a continental-scale dataset derived from audio recordings collected by citizen scientists, we show that frogs do partition acoustic space. Differences in calls were predominately caused by differences in spectral, rather than temporal, features. Specifically, the 90% frequency bandwidths of observed frog assemblages overlapped less than expected, and there was greater distance between dominant frequencies than expected. To our knowledge, this study is the first to use null models to test for acoustic niche partitioning over a large geographic scale

    Afraid of the Dark? The Influence of Natural and Artificial Light at Night on the Behavioral Activity of a Nocturnal Gecko

    Get PDF
    Both natural and artificial light at night can strongly influence animal behavior. Nocturnal animals often alter activity dependent on lunar light levels, to increase prey capture, minimize detection by predators, or both. Trade-offs among these ecological effects are likely to have a strong influence on behavior and fitness. Here, we examined the influence of light at night on nocturnal geckos that are both predators and prey, and use both natural and anthropogenic habitats. We tested the influence of illumination on the relative abundance and behavioral activity of native geckos in natural woodlands and under laboratory conditions. We hypothesized that Australian native house geckos (Gehyra dubia) would avoid activity on nights with high moon brightness, to minimize exposure to predators, consistent with the predation risk hypothesis. Counter to our prediction, we found a positive relationship between house gecko activity and moon brightness, i.e., house geckos were more active on bright nights. This behavior may allow house geckos to better see their prey while also increasing the visibility of approaching predators. In the laboratory, house geckos had shorter latency times to emerge from a shelter under low light conditions compared to darkness equivalent to a new moon, a trend consistent with higher activity under brighter conditions in the field. Light at night, from both natural and artificial sources, clearly influences the behavior and activity of geckos, but perhaps not in the ways we expect. Reducing the risk of attack from predators in darkness, and increasing prey capture success using vision, may increase the benefits of activity in lit conditions, compared to total darkness

    Impacts of artificial light on food intake in invasive toads

    Get PDF
    Artificial light at night (ALAN) is a major form of anthropogenic disturbance. ALAN attracts nocturnal invertebrates, which are a food source for nocturnal predators, including invasive species. Few studies quantify the effects of increased food availablity by ALAN on invasive vertebrate predators, and enhancement of food intake caused by ALAN may also be influenced by various environmental factors, such as proximitity to cities, moon phase, temperature, rainfall and wind speed. Revealing the potential impacts on invasive predators of ALAN-attracted invertebrates, and the influence of other factors on these effects, could provide important insights for the management of these predators. We constructed and supplied with artificial light field enclosures for invasive toads, and placed them at locations with different levels of ambient light pollution, in northeastern Australia. In addition, we determined the effect of rainfall, temperature, wind speed, and lunar phase on food intake in toads. We found that ALAN greatly increased the mass of gut contents of invasive toads compared to controls, but that the effect was increased in dark lunar phases, and when there were low ambient light pollution levels. Effects of rainfall, temperature and wind speed on food intake were comparatively weak. To avoid providing food resources to toads, management of ALAN in rural areas, and during dark lunar phases may be advisable. On the contrary, to effectively capture toads, trapping using lights as lures at such times and places should be more successful

    Ecological niche and microhabitat use of Australian geckos

    Get PDF
    Modern biological research often uses global datasets to answer broad-scale questions using various modelling techniques. But detailed information on species–habitat interactions are often only available for a few species. Australian geckos, a species-rich group of small nocturnal predators, are particularly data-deficient. For most species, information is available only as scattered, anecdotal, or descriptive entries in the taxonomic literature or in field guides. We surveyed gecko communities from 10 sites, and 15 locations across central and northern Queensland, Australia, to quantify ecological niche and habitat use of these communities. Our surveys included deserts, woodlands, and rainforests, examining 34 gecko species. We assigned species to habitat niche categories: arboreal (9 species), saxicoline (4), or terrestrial (13), if at least 75% of our observations fell in one microhabitat; otherwise we classified geckos as generalists (8). For arboreal species, we described perch height and perch diameter and assigned them to ecomorph categories, originally developed for Anolis lizards. There was lower species richness in rainforests than in habitats with lower relative humidity; the highest species richness occurred in woodlands. Most arboreal and generalist species fit the trunk-ground ecomorph, except those in the genus Strophurus, whose members preferred shrubs, twigs of small trees, or, in two cases, spinifex grass hummocks, thus occupying a perch space similar to that of grass-bush anoles. Habitat use by Pseudothecadactylus australis, Saltuarius cornutus, and Gehyra dubia fit the trunk-crown ecomorph. We provide quantified basic ecological data and habitat use for a large group of previously poorly documented species

    Invading the soundscape: exploring the effects of invasive species’ calls on acoustic signals of native wildlife

    Get PDF
    The transmission and reception of sound, both between conspecifics and among individuals of different species, play a crucial role in individual fitness, because correct interpretation of meaning encoded in acoustic signals enables important context-appropriate behaviours, such as predator avoidance, foraging, and mate location and identification. Novel noise introduced into a soundscape can disrupt the processes of receiving and recognising sounds. When species persist in the presence of novel noise, it may mask the production and reception of sounds important to fitness, and can reduce population size, species richness, or relative abundances, and thus influence community structure. In the past, most investigations into the effects of novel noise have focused on noises generated by anthropogenic sources. The few studies that have explored the effects of calls from invasive species suggest native species alter behaviours (particularly their vocal behaviour) in the presence of noise generated by invasive species. These effects may differ from responses to anthropogenic noises, because noises made by invasive species are biotic in origin, and may therefore be more spectrally similar to the calls of native species, and occur at similar times. Thus, in some cases, negative fitness consequences for native species, associated with noises generated by invasive species, may constitute interspecific competition. Possible negative consequences of invasive species calls represent an overlooked, and underappreciated, class of competitive interactions. We are far from understanding the full extent of the effects of invasive species on native ones. Further investigation of the contribution of noise interference to native species’ decline in the presence of invasive species will significantly increase our understanding of an important class of interactions between invasive and native species
    • …
    corecore