23,665 research outputs found
Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program. II: Wavelength Parallelization
We describe an important addition to the parallel implementation of our
generalized NLTE stellar atmosphere and radiative transfer computer program
PHOENIX. In a previous paper in this series we described data and task parallel
algorithms we have developed for radiative transfer, spectral line opacity, and
NLTE opacity and rate calculations. These algorithms divided the work spatially
or by spectral lines, that is distributing the radial zones, individual
spectral lines, or characteristic rays among different processors and employ,
in addition task parallelism for logically independent functions (such as
atomic and molecular line opacities). For finite, monotonic velocity fields,
the radiative transfer equation is an initial value problem in wavelength, and
hence each wavelength point depends upon the previous one. However, for
sophisticated NLTE models of both static and moving atmospheres needed to
accurately describe, e.g., novae and supernovae, the number of wavelength
points is very large (200,000--300,000) and hence parallelization over
wavelength can lead both to considerable speedup in calculation time and the
ability to make use of the aggregate memory available on massively parallel
supercomputers. Here, we describe an implementation of a pipelined design for
the wavelength parallelization of PHOENIX, where the necessary data from the
processor working on a previous wavelength point is sent to the processor
working on the succeeding wavelength point as soon as it is known. Our
implementation uses a MIMD design based on a relatively small number of
standard MPI library calls and is fully portable between serial and parallel
computers.Comment: AAS-TeX, 15 pages, full text with figures available at
ftp://calvin.physast.uga.edu/pub/preprints/Wavelength-Parallel.ps.gz ApJ, in
pres
Nodal Structure of Superconductors with Time-Reversal Invariance and Z2 Topological Number
A topological argument is presented for nodal structures of superconducting
states with time-reversal invariance. A generic Hamiltonian which describes a
quasiparticle in superconducting states with time-reversal invariance is
derived, and it is shown that only line nodes are topologically stable in
single-band descriptions of superconductivity. Using the time-reversal
symmetry, we introduce a real structure and define topological numbers of line
nodes. Stability of line nodes is ensured by conservation of the topological
numbers. Line nodes in high-Tc materials, the polar state in p-wave paring and
mixed singlet-triplet superconducting states are examined in detail.Comment: 11 pages, 8 figure
Supersymmetry and localization
We study conditions under which an odd symmetry of the integrand leads to
localization of the corresponding integral over a (super)manifold. We also show
that in many cases these conditions guarantee exactness of the stationary phase
approximation of such integrals.Comment: 16 pages, LATE
Effect of Poisson ratio on cellular structure formation
Mechanically active cells in soft media act as force dipoles. The resulting
elastic interactions are long-ranged and favor the formation of strings. We
show analytically that due to screening, the effective interaction between
strings decays exponentially, with a decay length determined only by geometry.
Both for disordered and ordered arrangements of cells, we predict novel phase
transitions from paraelastic to ferroelastic and anti-ferroelastic phases as a
function of Poisson ratio.Comment: 4 pages, Revtex, 4 Postscript figures include
Kaluza-Klein electrically charged black branes in M-theory
We present a class of Kaluza-Klein electrically charged black p-brane
solutions of ten-dimensional, type IIA superstring theory. Uplifting to eleven
dimensions these solutions are studied in the context of M-theory. They can be
interpreted either as a p+1 extended object trapped around the eleventh
dimension along which momentum is flowing or as a boost of the following
backgrounds: the Schwarzschild black (p+1)-brane or the product of the
(10-p)-dimensional Euclidean Schwarzschild manifold with the (p+1)-dimensional
Minkowski spacetime.Comment: 16 pages, uses latex and epsf macro, figures include
Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum
The wide deployment of tokens for digital assets on top of Ethereum implies
the need for powerful trading platforms. Vickrey auctions have been known to
determine the real market price of items as bidders are motivated to submit
their own monetary valuations without leaking their information to the
competitors. Recent constructions have utilized various cryptographic protocols
such as ZKP and MPC, however, these approaches either are partially
privacy-preserving or require complex computations with several rounds. In this
paper, we overcome these limits by presenting Trustee as a Vickrey auction on
Ethereum which fully preserves bids' privacy at relatively much lower fees.
Trustee consists of three components: a front-end smart contract deployed on
Ethereum, an Intel SGX enclave, and a relay to redirect messages between them.
Initially, the enclave generates an Ethereum account and ECDH key-pair.
Subsequently, the relay publishes the account's address and ECDH public key on
the smart contract. As a prerequisite, bidders are encouraged to verify the
authenticity and security of Trustee by using the SGX remote attestation
service. To participate in the auction, bidders utilize the ECDH public key to
encrypt their bids and submit them to the smart contract. Once the bidding
interval is closed, the relay retrieves the encrypted bids and feeds them to
the enclave that autonomously generates a signed transaction indicating the
auction winner. Finally, the relay submits the transaction to the smart
contract which verifies the transaction's authenticity and the parameters'
consistency before accepting the claimed auction winner. As part of our
contributions, we have made a prototype for Trustee available on Github for the
community to review and inspect it. Additionally, we analyze the security
features of Trustee and report on the transactions' gas cost incurred on
Trustee smart contract.Comment: Presented at Financial Cryptography and Data Security 2019, 3rd
Workshop on Trusted Smart Contract
Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata
Functions which are equivariant or invariant under the transformations of a
compact linear group acting in an euclidean space , can profitably
be studied as functions defined in the orbit space of the group. The orbit
space is the union of a finite set of strata, which are semialgebraic manifolds
formed by the -orbits with the same orbit-type. In this paper we provide a
simple recipe to obtain rational parametrizations of the strata. Our results
can be easily exploited, in many physical contexts where the study of
equivariant or invariant functions is important, for instance in the
determination of patterns of spontaneous symmetry breaking, in the analysis of
phase spaces and structural phase transitions (Landau theory), in equivariant
bifurcation theory, in crystal field theory and in most areas where use is made
of symmetry adapted functions.
A physically significant example of utilization of the recipe is given,
related to spontaneous polarization in chiral biaxial liquid crystals, where
the advantages with respect to previous heuristic approaches are shown.Comment: Figures generated through texdraw package; revised version appearing
in J. Phys. A: Math. Ge
Decay widths of large-spin mesons from the non-critical string/gauge duality
In this paper, we use the non-critical string/gauge duality to calculate the
decay widths of large-spin mesons. Since it is believed that the string theory
of QCD is not a ten dimensional theory, we expect that the non-critical
versions of ten dimensional black hole backgrounds lead to better results than
the critical ones. For this purpose we concentrate on the confining theories
and consider two different six dimensional black hole backgrounds. We choose
the near extremal AdS6 model and the near extremal KM model to compute the
decay widths of large-spin mesons. Then, we present our results from these two
non-critical backgrounds and compare them together with those from the critical
models and experimental data.Comment: 21 pages and 3 figure
A Note on Marginally Stable Bound States in Type II String Theory
Spectrum of elementary string states in type II string theory contains
ultra-short multiplets that are marginally stable. -duality transformation
converts these states into bound states at threshold of -branes carrying
Ramond-Ramond charges, and wrapped around -cycles of a torus. We propose a
test for the existence of these marginally stable bound states. Using the
recent results of Polchinski and of Witten, we argue that the spectrum of bound
states of -branes is in agreement with the prediction of -duality.Comment: LaTeX file, 6 page
Relativistic J-matrix method
The relativistic version of the J-matrix method for a scattering problem on
the potential vanishing faster than the Coulomb one is formulated. As in the
non-relativistic case it leads to a finite algebraic eigenvalue problem. The
derived expression for the tangent of phase shift is simply related to the
non-relativistic case formula and gives the latter as a limit case. It is due
to the fact that the used basis set satisfies the ``kinetic balance
condition''.Comment: 21 pages, RevTeX, accepted for publication in Phys. Rev.
- …