1,438 research outputs found

    A study of neutron-deuteron scattering in configuration space

    Full text link
    A new computational method for solving the configuration-space Faddeev equations for the breakup scattering problem has been applied to nd scattering both below and above the two-body threshold.Comment: 4 pages, 3 Postscript figures, uses espcrc1.sty Talk at the 18th International IUPAP Conference on Few-Body Problems in Physics, Aug. 21-26, 2006, Santos, Brazi

    Massive Supergravity and Deconstruction

    Full text link
    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various quantum effects which generate non-local operators in theory space. As an example, we show that the single massive supergravity multiplet in a 2-site model can serve the function of an extra dimension in anomaly mediation.Comment: 24 pages, 2 figures, some color. Typos fixed and refs added in v

    Tverberg-type theorems for intersecting by rays

    Full text link
    In this paper we consider some results on intersection between rays and a given family of convex, compact sets. These results are similar to the center point theorem, and Tverberg's theorem on partitions of a point set

    Hidden breakpoints in genome alignments

    Full text link
    During the course of evolution, an organism's genome can undergo changes that affect the large-scale structure of the genome. These changes include gene gain, loss, duplication, chromosome fusion, fission, and rearrangement. When gene gain and loss occurs in addition to other types of rearrangement, breakpoints of rearrangement can exist that are only detectable by comparison of three or more genomes. An arbitrarily large number of these "hidden" breakpoints can exist among genomes that exhibit no rearrangements in pairwise comparisons. We present an extension of the multichromosomal breakpoint median problem to genomes that have undergone gene gain and loss. We then demonstrate that the median distance among three genomes can be used to calculate a lower bound on the number of hidden breakpoints present. We provide an implementation of this calculation including the median distance, along with some practical improvements on the time complexity of the underlying algorithm. We apply our approach to measure the abundance of hidden breakpoints in simulated data sets under a wide range of evolutionary scenarios. We demonstrate that in simulations the hidden breakpoint counts depend strongly on relative rates of inversion and gene gain/loss. Finally we apply current multiple genome aligners to the simulated genomes, and show that all aligners introduce a high degree of error in hidden breakpoint counts, and that this error grows with evolutionary distance in the simulation. Our results suggest that hidden breakpoint error may be pervasive in genome alignments.Comment: 13 pages, 4 figure

    Quantization on a 2-dimensional phase space with a constant curvature tensor

    Full text link
    Some properties of the star product of the Weyl type (i.e. associated with the Weyl ordering) are proved. Fedosov construction of the *-product on a 2-dimensional phase spacewith a constant curvature tensor is presented. Eigenvalue equations for momentum p and position q on a 2-dimensional phase space with constant curvature tensors are solved.Comment: 33 pages, LaTeX, Annals of Physics (2003

    Strong Coupling vs. 4-D Locality in Induced Gravity

    Full text link
    We re-examine the problem of strong coupling in a regularized version of DGP (or ``brane-induced'') gravity. We find that the regularization of ref. hep-th/0304148 differs from DGP in that it does not exhibit strong coupling or ghosts up to cubic order in the interactions. We suggest that the nonlocal nature of the theory, when written in terms of the 4-D metric, is a plausible reason for this phenomenon. Finally, we briefly discuss the possible behavior of the model at higher-order in perturbation theory.Comment: 19 pages, accepted for publication in PR

    Chiral symmetry breaking, color superconductivity and color neutral quark matter: a variational approach

    Full text link
    We investigate the vacuum realignment for chiral symmetry breaking and color superconductivity at finite density in Nambu-Jona-Lasinio model in a variational method. The treatment allows us to investigate simultaneous formation of condensates in quark antiquark as well as in diquark channels. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. Color and electric charge neutrality conditions are imposed through introduction of appropriate chemical potentials. Color and flavor dependent condensate functions are determined through minimisation of the thermodynamic potential. The equation of state is calculated. Simultaneous existence of a mass gap and superconducting gap is seen in a small window of quark chemical potential within the model when charge neutrality conditions are not imposed. Enforcing color and electric charge neutrality conditions gives rise to existence of gapless superconducting modes depending upon the magnitude of the gap and the difference of the chemical potentials of the condensing quarks.Comment: 13 pages, 6 figures,to appear in Phys. Rev.

    Wave packet revivals and the energy eigenvalue spectrum of the quantum pendulum

    Full text link
    The rigid pendulum, both as a classical and as a quantum problem, is an interesting system as it has the exactly soluble harmonic oscillator and the rigid rotor systems as limiting cases in the low- and high-energy limits respectively. The energy variation of the classical periodicity (τ\tau) is also dramatic, having the special limiting case of τ→∞\tau \to \infty at the 'top' of the classical motion (i.e. the separatrix.) We study the time-dependence of the quantum pendulum problem, focusing on the behavior of both the (approximate) classical periodicity and especially the quantum revival and superrevival times, as encoded in the energy eigenvalue spectrum of the system. We provide approximate expressions for the energy eigenvalues in both the small and large quantum number limits, up to 4th order in perturbation theory, comparing these to existing handbook expansions for the characteristic values of the related Mathieu equation, obtained by other methods. We then use these approximations to probe the classical periodicity, as well as to extract information on the quantum revival and superrevival times. We find that while both the classical and quantum periodicities increase monotonically as one approaches the 'top' in energy, from either above or below, the revival times decrease from their low- and high-energy values until very near the separatrix where they increase to a large, but finite value.Comment: 27 pages, 8 embedded .eps figures; to appear, Annals of Physic
    • 

    corecore