23 research outputs found

    Minireview: recent progress in gonadotropin-releasing hormone neuronal migration

    Get PDF
    Neurons that synthesize GnRH are critical brain regulators of the reproductive axis, yet they originate outside the brain and must migrate over long distances and varied environments to get to their appropriate positions during development. Many studies, past and present, are providing clues for the types of molecules encountered and movements expected along the migratory route. Recent studies provide real-time views of the behavior of GnRH neurons in the context of in vitro preparations that model those in vivo. Live images provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more alterations in direction after they enter the brain. The heterogeneity of molecular phenotypes for GnRH neurons likely ensures that multiple external factors will be found that regulate the migration of different portions of the GnRH neuronal population at different steps along the route. Molecules distributed in gradients both in the peripheral olfactory system and basal forebrain may be particularly influential in directing the appropriate movement of GnRH neurons along their arduous migration. Molecules that mediate the adhesion of GnRH neurons to changing surfaces may also play critical roles. It is likely that the multiple external factors converge on selective signal transduction pathways to engage the mechanical mechanisms needed to modulate GnRH neuronal movement and ultimately migration

    Glycolipids of the mouse peritoneal macrophage. Alterations in amount and surface exposure of specific glycolipid species occur in response to inflammation and tumoricidal activation

    Get PDF
    We have characterized the major glycolipid constituents of the mouse peritoneal macrophage, and have demonstrated that alterations in the amount and in the accessibility of specific glycolipid species to galactose oxidase/NaB3H4 labeling, an indicator of glycolipid surface exposure, occur in response to inflammation and as a consequence of activation to a tumoricidal state. The key findings are: (a) Asialo GM1, a major neutral glycolipid constituent of all macrophage populations examined, is accessible to galactose oxidase/NaB3H4 labeling on the surface of TG-elicited and BCG-activated macrophages but not on resident macrophages; (b) GM1 is the predominant ganglioside constituent of the mouse macrophage. Resident macrophages contain two distinct GM1 species, as determined by cholera toxin binding, while TG-elicited and BCG-activated macrophages contain an additional GM1 species. Differences in the relative amounts of these GM1 species, as well as in their accessibility to galactose oxidase/NaB3H4 labeling, exist among the macrophage populations. These observations suggest that both a chemical and spatial reorganization of surface glycolipids occurs in response to inflammation and tumoricidal activation

    {beta}3GnT2 Maintains Adenylyl Cyclase-3 Signaling and Axon Guidance Molecule Expression in the Olfactory Epithelium

    Get PDF
    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase beta3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the beta3GnT2(-/-) OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80-90% in the beta3GnT2(-/-) OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from beta3GnT2(-/-) OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from beta3GnT2(-/-) OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in beta3GnT2(-/-) mice

    Stromal cell-derived factor-1 (chemokine C-X-C motif ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain

    Get PDF
    Gonadotropin-releasing hormone (GnRH) neurons migrate from the vomeronasal organ (VNO) in the nasal compartment to the basal forebrain in mice, beginning on embryonic day 11 (E11). These neurons use vomeronasal axons as guides to migrate through the nasal mesenchyme. Most GnRH neurons then migrate along the caudal branch of the vomeronasal nerve to reach the hypothalamus. We show here that stromal cell-derived factor-1 [SDF-1, also known as chemokine C-X-C motif ligand 12 (CXCL12)] is expressed in the embryonic nasal mesenchyme from as early as E10 in an increasing rostral to caudal gradient that is most intense at the border of the nasal mesenchyme and the telencephalon. Chemokine C-X-C motif receptor 4 (CXCR4), the receptor for SDF-1, is expressed by neurons in the olfactory epithelium and VNO. Cells derived from these sensory epithelia, including migrating GnRH neurons and ensheathing glial precursors of the migrating mass (MM), also express CXCR4, suggesting that they may use SDF-1 as a chemokine. In support of this, most GnRH neurons of CXCR4-/- mice fail to exit the VNO at E13, and comparatively few GnRH neurons reach the forebrain. There is also a significant decrease in the total number of GnRH neurons in CXCR4-/- mice and an increase in cell death within the VNO relative to controls. The MM is smaller in CXCR4-/- mice, suggesting that some MM cells also require SDF-1/CXCR4 function for migration and survival

    Olfactory discrimination largely persists in mice with defects in odorant receptor expression and axon guidance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2<sup>−/−</sup> mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2<sup>−/−</sup> neurons.</p> <p>Results</p> <p>Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2<sup>−/−</sup> mice compared to controls. Analysis of OR expression by quantitative PCR and <it>in situ</it> hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2<sup>−/−</sup> olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2<sup>−/−</sup> mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, <it>in situ</it> hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2<sup>−/−</sup> olfactory neurons.</p> <p>Conclusions</p> <p>Results presented here show that many odorant receptors are under-expressed in β3GnT2<sup>−/−</sup> mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2<sup>−/−</sup> mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2<sup>−/−</sup> mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact.</p

    Beta1,3-N-acetylglucosaminyltransferase 1 glycosylation is required for axon pathfinding by olfactory sensory neurons

    Get PDF
    During embryonic development, axons from sensory neurons in the olfactory epithelium (OE) extend into the olfactory bulb (OB) where they synapse with projection neurons and form glomerular structures. To determine whether glycans play a role in these processes, we analyzed mice deficient for the glycosyltransferase beta1,3-N-acetylglucosaminyltransferase 1 (beta3GnT1), a key enzyme in lactosamine glycan synthesis. Terminal lactosamine expression, as shown by immunoreactivity with the monoclonal antibody 1B2, is dramatically reduced in the neonatal null OE. Postnatal beta3GnT1-/- mice exhibit severely disorganized OB innervation and defective glomerular formation. Beginning in embryonic development, specific subsets of odorant receptor-expressing neurons are progressively lost from the OE of null mice, which exhibit a postnatal smell perception deficit. Axon guidance errors and increased neuronal cell death result in an absence of P2, I7, and M72 glomeruli, indicating a reduction in the repertoire of odorant receptor-specific glomeruli. By approximately 2 weeks of age, lactosamine is unexpectedly reexpressed in sensory neurons of null mice through a secondary pathway, which is accompanied by the regrowth of axons into the OB glomerular layer and the return of smell perception. Thus, both neonatal OE degeneration and the postnatal regeneration are lactosamine dependent. Lactosamine expression in beta3GnT1-/- mice is also reduced in pheromone-receptive vomeronasal neurons and dorsal root ganglion cells, suggesting that beta3GnT1 may perform a conserved function in multiple sensory systems. These results reveal an essential role for lactosamine in sensory axon pathfinding and in the formation of OB synaptic connections

    Live view of gonadotropin-releasing hormone containing neuron migration

    Get PDF
    Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration

    Developmental profile and sexually dimorphic expression of kiss1 and kiss1r in the fetal mouse brain

    Get PDF
    The hypothalamic-pituitary-gonadal axis (HPG) is a complex neuroendocrine circuit involving multiple levels of regulation. Kisspeptin neurons play essential roles in controlling the HPG axis from the perspectives of puberty onset, oscillations of gonadotropin releasing hormone (GnRH) neuron activity and the pre-ovulatory LH surge. The current studies focus on the expression of kisspeptin during murine fetal development using in situ hybridization (ISH), quantitative reverse transcription real-time PCR (QPCR) and immunocytochemistry. Expression of mRNA coding for kisspeptin (KISS1) and its receptor KISS1R was observed at embryonic (E) day 13 by ISH. At E13 and other later ages examined, Kiss1 signal in individual cells within the arcuate nucleus (ARC) appeared stronger in females than males. ISH examination of agonadal steroidogenic factor-1 (Sf1) knockout mice revealed that E17 XY knockouts resembled wild-type XX females. These findings raise the possibility that gonadal hormones modulate the expression of Kiss1 in the ARC prior to birth. The sex and genotype differences were tested quantitatively by QPCR experiments in dissected hypothalami from mice at E17 and adulthood. Females had significantly more Kiss1 than males at both ages, even though the number of cells detected by ISH was similar. In addition, QPCR revealed a significant difference in the amount of Kiss1 mRNA in Sf1 mice with wild-type (WT) XY mice expressing less than XY knockouts (KO) and XX mice of both genotypes. The detection of immunoreactive KISS1 in perikarya of the ARC at E17 indicates that early mRNA is translated to peptide. The functional significance of this early expression of Kiss1 awaits elucidation

    Lactosamine differentially affects olfactory sensory neuron projections to the olfactory bulb

    No full text
    During embryonic development, olfactory sensory neurons extend axons that form synapses with the dendrites of projection neurons in glomeruli of the olfactory bulb (OB). The glycosyltransferase beta3GnT1 regulates the expression of 1B2-reactive lactosamine glycans that are mosaically distributed among glomeruli. In newborn beta3GnT1-/- mice, lactosamine expression is lost, and many glomeruli fail to form. To determine the role of lactosamine in OB targeting, we analyzed the trajectories of specific OR axon populations and their reactivity with 1B2 in beta3GnT1-/- mice. mI7 axons and P2 axons, both of which are weakly 1B2+ in wild-type mice, fail to grow to their normal positions in the glomerular layer during early postnatal development and never recover in adult mutant mice. In contrast, many M72 axons, which are always lactosamine negative in wild-type mice, survive but are misguided to the extreme anterior OB in neonatal mutant mice and persist as heterotypic glomeruli, even in adult null mice. These results show that the loss of lactosamine differentially affects each OR population. Those that lose their normal expression of lactosamine fail to form stable connections with mitral and tufted cells in the OB, disappear during early postnatal development, and do not recover in adults. Neurons that are normally lactosamine negative, survive early postnatal degeneration in beta3GnT1-/- mice but extend axons that converge on inappropriate targets in the mutant OB

    Patterning the developing and regenerating olfactory system

    No full text
    The olfactory system is a remarkable model for investigating the factors that influence the guidance of sensory axon populations to specific targets in the CNS. Since the initial discovery of the vast odorant receptor (ORs) gene family in rodents and the subsequent finding that these molecules directly influence targeting, several additional olfactory axon guidance cues have been identified. Two of these, ephrins and semaphorins, have well-established functions in patterning axon connections in other systems. In addition, lactosamine-containing glycans are also required for proper targeting and maintenance of olfactory axons, and may also function in other sensory regions. It is now apparent that these and likely other additional molecules are required along with ORs to orchestrate the complex pattern of convergence and divergence that is unique to the olfactory system
    corecore