316 research outputs found

    Vapor wall deposition in Teflon chambers

    Get PDF
    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor–wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (α_(wi)), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of α_(w,i). For volatile and intermediate volatility organic compounds (small α_(w,i)), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large α_(w,i), vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation

    Trench silos in Minnesota

    Get PDF
    7 pages; includes photographs and drawing. This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NO_x conditions

    Get PDF
    Recent advances in our knowledge of the gas-phase oxidation of isoprene, the impact of chamber walls on secondary organic aerosol (SOA) mass yields, and aerosol measurement analysis techniques warrant reevaluating SOA yields from isoprene. In particular, SOA from isoprene oxidation under high-NOx conditions forms via two major pathways: (1) low-volatility nitrates and dinitrates (LV pathway) and (2) hydroxymethyl-methyl-α-lactone (HMML) reaction on a surface or the condensed phase of particles to form 2-methyl glyceric acid and its oligomers (2MGA pathway). These SOA production pathways respond differently to reaction conditions. Past chamber experiments generated SOA with varying contributions from these two unique pathways, leading to results that are difficult to interpret. This study examines the SOA yields from these two pathways independently, which improves the interpretation of previous results and provides further understanding of the relevance of chamber SOA yields to the atmosphere and regional or global modeling. Results suggest that low-volatility nitrates and dinitrates produce significantly more aerosol than previously thought; the experimentally measured SOA mass yield from the LV pathway is ∼0.15. Sufficient seed surface area at the start of the reaction is needed to limit the effects of vapor wall losses of low-volatility compounds and accurately measure the complete SOA mass yield. Under dry conditions, substantial amounts of SOA are formed from HMML ring-opening reactions with inorganic ions and HMML organic oligomerization processes. However, the lactone organic oligomerization reactions are suppressed under more atmospherically relevant humidity levels, where hydration of the lactone is more competitive. This limits the SOA formation potential from the 2MGA pathway to HMML ring-opening reactions with water or inorganic ions under typical atmospheric conditions. The isoprene SOA mass yield from the LV pathway measured in this work is significantly higher than previous studies have reported, suggesting that low-volatility compounds such as organic nitrates and dinitrates may contribute to isoprene SOA under high-NOx conditions significantly more than previously thought and thus deserve continued study

    Formation of highly oxygenated low-volatility products from cresol oxidation

    Get PDF
    Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ∼ 3.5  ×  10^4 − 7.7  ×  10^(−3) µg m^(−3)), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ∼ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ∼ 20 % of the oxidation products of toluene, it is the source of a significant fraction (∼ 20–40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products

    MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Get PDF
    Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate

    Desempenho inicial de sementes de milho tratadas com biorreguladores submetidas a déficit hídrico.

    Get PDF
    Edição Especial contendo os Anais do XVIII Congresso Brasileiro de Sementes, Florianópolis, set. 2013

    Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds

    Get PDF
    The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40–75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na^+ was substituted for NH^(+)_(4). The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 10^7 M atm^−1 (−50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO^(2-)_(4)), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity

    Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere

    Get PDF
    Methacryloyl peroxynitrate (MPAN), the acyl peroxynitrate of methacrolein, has been suggested to be an important secondary organic aerosol (SOA) precursor from isoprene oxidation. Yet, the mechanism by which MPAN produces SOA through reaction with the hydroxyl radical (OH) is unclear. We systematically evaluate three proposed mechanisms in controlled chamber experiments and provide the first experimental support for the theoretically-predicted lactone formation pathway from the MPAN + OH reaction, producing hydroxymethyl-methyl-α-lactone (HMML). The decomposition of the MPAN–OH adduct yields HMML + NO_3 ( 75%) and hydroxyacetone + CO + NO_3 ( 25%), out-competing its reaction with atmospheric oxygen. The production of other proposed SOA precursors, e.g., methacrylic acid epoxide (MAE), from MPAN and methacrolein are negligible (<2%). Furthermore, we show that the beta-alkenyl moiety of MPAN is critical for lactone formation. Alkyl radicals formed cold via H-abstraction by OH do not decompose to HMML, even if they are structurally identical to the MPAN–OH adduct. The SOA formation from HMML, from polyaddition of the lactone to organic compounds at the particle interface or in the condensed phase, is close to unity under dry conditions. However, the SOA yield is sensitive to particle liquid water and solvated ions. In hydrated inorganic particles, HMML reacts primarily with H¬_2O to produce the monomeric 2-methylglyceric acid (2MGA) or with aqueous sulfate and nitrate to produce the associated organosulfate and organonitrate, respectively. 2MGA, a tracer for isoprene SOA, is semivolatile and its accommodation in aerosol water decreases with decreasing pH. Conditions that enhance the production of neutral 2MGA suppress SOA mass from the HMML channel. Considering the liquid water content and pH ranges of ambient particles, 2MGA will exist largely as a gaseous compound in some parts of the atmosphere

    Isoprene NO_3 Oxidation Products from the RO_2 + HO_2 Pathway

    Get PDF
    We describe the products of the reaction of the hydroperoxy radical (HO_2) with the alkylperoxy radical formed following addition of the nitrate radical (NO_3) and O_2 to isoprene. NO_3 adds preferentially to the C_1 position of isoprene (>6 times more favorably than addition to C_4), followed by the addition of O_2 to produce a suite of nitrooxy alkylperoxy radicals (RO_2). At an RO_2 lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO_2 + HO_2 pathway are identified as 0.75–0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH_2O) + hydroxyl radical (OH) + nitrogen dioxide (NO_2), and 0–0.03 methacrolein (MACR) + CH_2O + OH + NO_2. We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation

    Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols

    Get PDF
    The complexation of iron (III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron (II) and the carbon dioxide anion radical. Importantly, iron (III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron (III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron (III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ~ 3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron (III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols
    • …
    corecore