1,178 research outputs found

    PPM-Extended (PPMX) - a catalogue of positions and proper motions

    Full text link
    Aims: We build a catalogue PPM-Extended (PPMX) on the ICRS system which is complete down to a well-defined limiting magnitude and contains the best presently available proper motions to be suited for kinematical studies in the Galaxy. Methods: We perform a rigorous weighted least-squares adjustment of individual observations, spread over more than a century, to determine mean positions and proper motions. The stellar content of PPMX is taken from GSC 1.2 supplemented by catalogues like ARIHIP, PPM and Tycho-2 at the bright end. All observations have been weighted according to their individual accuracy. The catalogue has been screened towards rejecting false entries in the various source catalogues. Results: PPM-Extended (PPMX) is a catalogue of 18,088,920 stars containing astrometric and photometric information. Its limiting magnitude is about 15.2 in the GSC photometric system. PPMX consists of three parts: a) a survey complete down to R_U = 12.8 in the magnitude system of UCAC2; b) additional stars of high-precision proper motions, and c) all other stars from GSC 1.2 identified in 2MASS. The typical accuracy of the proper motions is 2mas/y for 66 percent of the survey stars (a) and the high-precision stars (b), and about 10 mas/y for all other stars. PPMX contains photometric information from ASCC-2.5 and 2MASS.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    Optical control of coherent interactions between quantum dot electron spins

    Full text link
    Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.Comment: 5 pages, 4 figure

    Diversity and Distribution of Borrelia hermsii

    Get PDF
    Multilocus sequence analysis and laboratory experiments suggest that birds may play a role in maintaining and dispersing this pathogen

    Effect of pump-probe detuning on the Faraday rotation and ellipticity signals of mode-locked spins in InGaAs quantum dots

    Full text link
    We have studied the Faraday rotation and ellipticity signals in ensembles of singly-charged (In,Ga)As/GaAs quantum dots by pump-probe spectroscopy. For degenerate pump and probe we observe that the Faraday rotation signal amplitude first grows with increasing the time separation between pump and probe before a decay is observed for large temporal separations. The temporal behavior of the ellipticity signal, on the other hand, is regular: its amplitude decays with the separation. By contrast, for detuned pump and probe the Faraday rotation and ellipticty signals both exhibit similar and conventional behavior. The experimental results are well described in the frame of a recently developed microscopic theory [Phys. Rev. B 80, 104436 (2009)]. The comparison between calculations and experimental data allows us to provide insight into the spectral dependence of the electron spin precession frequencies and extract the electron g-factor dependence on energy.Comment: 9 pages, 7 figure

    Sterilization of lung matrices by supercritical carbon dioxide

    Get PDF
    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO(2)) that can achieve a sterility assurance level 10(−6) in decellularized lung matrix. The effects of ScCO(2) treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO(2) did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO(2), indicating that ScCO(2) produces a matrix that is stable during storage. The current study's results indicate that ScCO(2) can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes

    Tick-borne Relapsing Fever Caused by Borrelia hermsii, Montana

    Get PDF
    Five persons contracted tick-borne relapsing fever after staying in a cabin in western Montana. Borrelia hermsii was isolated from the blood of two patients, and Ornithodoros hermsi ticks were collected from the cabin, the first demonstration of this bacterium and tick in Montana. Relapsing fever should be considered when patients who reside or have vacationed in western Montana exhibit a recurring febrile illness

    Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu

    Get PDF
    The main aim of this work was to produce fruit wines from pulp of gabiroba, cacao, umbu, cupuassu and jaboticaba and characterize them using gas chromatography–mass spectrometry for determination of minor compounds and gas chromatography-flame ionization detection for major compounds. Ninety-nine compounds (C6 compounds, alcohols, monoterpenic alcohols, monoterpenic oxides, ethyl esters, acetates, volatile phenols, acids, carbonyl compounds, sulfur compounds and sugars) were identified in fruit wines. The typical composition for each fruit wine was evidenced by principal component analysis and Tukey test. The yeast UFLA CA 1162 was efficient in the fermentation of the fruit pulp used in this work. The identification and quantification of the compounds allowed a good characterization of the fruit wines. With our results, we conclude that the use of tropical fruits in the production of fruit wines is a viable alternative that allows the use of harvest surpluses and other underused fruits, resulting in the introduction of new products into the market.Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    corecore