642 research outputs found

    Ricci Reheating

    Full text link
    We present a model for viable gravitational reheating involving a scalar field directly coupled to the Ricci curvature scalar. Crucial to the model is a period of kination after inflation, which causes the Ricci scalar to change sign thus inducing a tachyonic effective mass m2H2m^{2} \propto -H^2 for the scalar field. The resulting tachyonic growth of the scalar field provides the energy for reheating, allowing for temperatures high enough for thermal leptogenesis. Additionally, the required period of kination necessarily leads to a blue-tilted primordial gravitational wave spectrum with the potential to be detected by future experiments. We find that for reheating temperatures TRH1T_{\rm RH} \lesssim 1 GeV, the possibility exists for the Higgs field to play the role of the scalar field.Comment: 9 pages, 6 figure

    Audible Axions

    Full text link
    Conventional approaches to probing axions and axion-like particles (ALPs) typically rely on a coupling to photons. However, if this coupling is extremely weak, ALPs become invisible and are effectively decoupled from the Standard Model. Here we show that such invisible axions, which are viable candidates for dark matter, can produce a stochastic gravitational wave background in the early universe. This signal is generated in models where the invisible axion couples to a dark gauge boson that experiences a tachyonic instability when the axion begins to oscillate. Incidentally, the same mechanism also widens the viable parameter space for axion dark matter. Quantum fluctuations amplified by the exponentially growing gauge boson modes source chiral gravitational waves. For axion decay constants f1017f \gtrsim 10^{17} GeV, this signal is detectable by either pulsar timing arrays or space/ground-based gravitational wave detectors for a broad range of axion masses, thus providing a new window to probe invisible axion models.Comment: 8 pages, 4 figures. References added, version submitted to JHE

    Consequences of T-parity breaking in the Littlest Higgs model

    Full text link
    In this paper we consider the effects of the T-parity violating anomalous Wess-Zumino-Witten-Term in the Littlest Higgs model. Apart from tree level processes, the loop induced decays of the heavy mirror particles into light standard model fermions lead to a new and rich phenomenology in particular at breaking scales f below 1 TeV. Various processes are calculated and their signatures at present and future colliders are discussed. As a byproduct we find an alternative production mechanism for the Higgs boson.Comment: 30 page

    A Little Higgs Model with Exact Dark Matter Parity

    Full text link
    Based on a recent idea by Krohn and Yavin, we construct a little Higgs model with an internal parity that is not broken by anomalous Wess-Zumino-Witten terms. The model is a modification of the "minimal moose" models by Arkani-Hamed et al. and Cheng and Low. The new parity prevents large corrections to oblique electroweak parameters and leads to a viable dark matter candidate. It is shown how the complete Standard Model particle content, including quarks and leptons together with their Yukawa couplings, can be implemented. Successful electroweak symmetry breaking and consistency with electroweak precision constraints is achieved for natural paramters choices. A rich spectrum of new particles is predicted at the TeV scale, some of which have sizable production cross sections and striking decay signatures at the LHC.Comment: 25 pp. LaTeX; v2: improved discussion of precision constraints and references added; v3: summary of model structure added at beginning of sect. 2, version published in JHEP; v4: small correction in Fig.5; v5: correction to Fig.

    Search for Higgs Bosons in SUSY Cascade Decays and Neutralino Dark Matter

    Full text link
    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is a well motivated theoretical framework, which contains an extended Higgs sector, including a light Higgs with Standard Model-like properties in most of the parameter space. Due to the large QCD background, searches for such a Higgs, decaying into a pair of bottom quarks, is very challenging at the LHC. It has been long realized that the situation may be ameliorated by searching for Higgs bosons in supersymmetric decay chains. Moreover, it has been recently suggested that the bobber decay channel may be observed in standard production channels by selecting boosted Higgs bosons, which may be easily identified from the QCD background. Such boosted Higgs bosons are frequent in the MSSM, since they are produced from decays of heavy colored supersymmetric particles. Previous works have emphasized the possibility of observing boosted Higgs bosons in the light higgsino region. In this work, we study the same question in the regions of parameter space consistent with a neutralino dark matter relic density, analyzing its dependence on the non-standard Higgs boson, slepton and squark masses, as well as on the condition of gaugino mass unification. In general, we conclude that, provided sleptons are heavier than the second lightest neutralinos, the presence of boosted Higgs is a common MSSM feature, implying excellent prospects for observation of the light MSSM Higgs boson in the near future.Comment: 30 pages, 9 figures. v2: New Xenon 100 results implemented, version to appear in PR

    Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    Get PDF
    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration

    The Coherence Field in the Field Perturbation Theory of Superconductivity

    Full text link
    We re-examine the Nambu-Gorkov perturbation theory of superconductivity on the basis of the Bogoliubov-Valatin quasi-particles. We show that two different fields (and two additional analogous fields) may be constructed, and that the Nambu field is only one of them. For the other field- the coherence field- the interaction is given by means of two interaction vertices that are based on the Pauli matrices tau1 and tau3. Consequently, the Hartree integral for the off-diagonal pairing self-energy may be finite, and in some cases large. We interpret the results in terms of conventional superconductivity, and also discuss briefly possible implications to HTSC

    Inquiry in Technology Education

    Get PDF
    Technology education involves much more than instruction of the artifacts and methods of technology. The increasing amount and complexity of technology require students to know how to use, manage, assess, and understand technology. Inquiry is a cognitive instructional strategy that can help students learn about current technologies and also provide them with tools for investigating emerging technologies as they are encountered
    corecore