12 research outputs found

    Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I

    Get PDF
    Viruses are the most abundant biological entities in aquatic environments, typically exceeding the abundance of bacteria by an order of magnitude. The reliable enumeration of virus-like particles in marine microbiological investigations is a key measurement parameter. Although the size of typical marine viruses (20-200 nm) is too small to permit the resolution of details by light microscopy, such viruses can be visualized by epifluorescence microscopy if stained brightly. This can be achieved using the sensitive DNA dye SYBR Green I (Molecular Probes-Invitrogen). The method relies on simple vacuum filtration to capture viruses on a 0.02-μm aluminum oxide filter, and subsequent staining and mounting to prepare slides. Virus-like particles are brightly stained and easily observed for enumeration, and prokaryotic cells can easily be counted on the same slides. The protocol provides an inexpensive, rapid (30 min) and reliable technique for obtaining counts of viruses and prokaryotes simultaneously

    Rapid growth rates of aerobic anoxygenic phototrophs in the ocean

    No full text
    We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91–1.08 day1 and in the South Atlantic at rates of 0.72–0.89 day1. In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day1. These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.<br/
    corecore