27 research outputs found

    In-situ growth optimization in focused electron-beam induced deposition

    Full text link
    We present the application of an evolutionary genetic algorithm for the in-situ optimization of nanostructures prepared by focused electron-beam-induced deposition. It allows us to tune the properties of the deposits towards highest conductivity by using the time gradient of the measured in-situ rate of change of conductance as fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO)6 as well as for post-treatment of Pt-C deposits obtained by dissociation of MeCpPt(Me)3. For W(CO)6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me)3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for further optimization or tuning of parameters for nanostrucures prepared by FEBID or related techniques

    Evidence for universal conductance correction in a tunable strongly coupled nanogranular metal

    Full text link
    We present temperature-dependent conductivity data obtained on a sample set of nanogranular Pt-C with finely tuned inter-grain tunnel coupling strength g. For samples in the strong-coupling regime g > g_C, characterized by a finite conductivity for T -> 0, we find a logarithmic behavior at elevated temperatures and a crossover to a sqrt(T)-behavior at low temperatures over a wide range of coupling strengths g_C = 0.25 < g <= 3. The experimental observation for g > 1 is in very good agreement with recent theoretical findings on ordered granular metals in three spatial dimensions. The results indicate a validity of the predicted universal conductivity behavior that goes beyond the immediate range of the approach used in the theoretical derivation

    Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    Get PDF
    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors’ conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy

    A Tunable Strain Sensor Using Nanogranular Metals

    Get PDF
    This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)3]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals

    Granular Hall sensors for scanning probe microscopy

    No full text
    Scanning Hall probe microscopy is attractive for minimally invasive characterization of magnetic thin films and nanostructures by measurement of the emanating magnetic stray field. Established sensor probes operating at room temperature employ highly miniaturized spin-valve elements or semimetals, such as Bi. As the sensor layer structures are fabricated by patterning of planar thin films, their adaption to custom-made sensor probe geometries is highly challenging or impossible. Here we show how nanogranular ferromagnetic Hall devices fabricated by the direct-write method of focused electron beam induced deposition (FEBID) can be tailor-made for any given probe geometry. Furthermore, we demonstrate how the magnetic stray field sensitivity can be optimized in situ directly after direct-write nanofabrication of the sensor element. First proof-of-principle results on the use of this novel scanning Hall sensor are shown

    Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine

    No full text
    Tracking of biological and physiological processes on the nanoscale is a central part of the growing field of nanomedicine. Although atomic force microscopy (AFM) is one of the most appropriate techniques in this area, investigations in non-transparent fluids such as human blood are not possible with conventional AFMs due to limitations caused by the optical readout. Here, we show a promising approach based on self-sensing cantilevers (SSC) as a replacement for optical readout in biological AFM imaging. Piezo-resistors, in the form of a Wheatstone bridge, are embedded into the cantilever, whereas two of them are placed at the bending edge. This enables the deflection of the cantilever to be precisely recorded by measuring the changes in resistance. Furthermore, the conventional acoustic or magnetic vibration excitation in intermittent contact mode can be replaced by a thermal excitation using a heating loop. We show further developments of existing approaches enabling stable measurements in turbid liquids. Different readout and excitation methods are compared under various environmental conditions, ranging from dry state to human blood. To demonstrate the applicability of our laser-free bio-AFM for nanomedical research, we have selected the hemostatic process of blood coagulation as well as ultra-flat red blood cells in different turbid fluids. Furthermore, the effects on noise and scanning speed of different media are compared. The technical realization is shown (1) on a conventional optical beam deflection (OBD)-based AFM, where we replaced the optical part by a new SSC nose cone, and (2) on an all-electric AFM, which we adapted for measurements in turbid liquids

    Analysis of local deformation effects in resistive strain sensing of a submicron-thickness AFM cantilever

    No full text
    Incorporating resistive strain-sensing elements into MEMS devices is a long-standing approach for electronic detection of the device deformation. As the need for more sensitivity trends the device dimensions downwards, the size of the strain-sensor may become comparable to the device size, which can have significant impact on the mechanical behaviour of the device. To study this effect, we modelled a submicron-thickness silicon nitride AFM cantilever with strain-sensing element. Using finite element analysis, we calculated the strain in the sensor elements for a deflected cantilever. The sensor element contributes to a local stiffening effect in the device structure which lowers the strain in the sensor. By varying the sensor geometry, we investigated the degree to which this effect impacts the strain. Minimizing the sensor size increases the strain, but the reduction in sensor cross-sectional area increases the resistance and expected sensor noise. The optimal sensor geometry must therefore account for this effect. We used our analysis to optimize geometric variations of nanogranular tunnelling resistor (NTR) strain sensors arranged in a Wheatstone bridge on a silicon nitride AFM cantilever. We varied the dimensions of each sensor element to maintain a constant cross-sectional area but maximize the strain in the sensor element. Through this approach, we expect a 45% increase in strain in the sensor and corresponding 20% increase in the Wheatstone bridge signal. Our results provide an important consideration in the design geometry of resistive strain-sensing elements in MEMS devices

    Damped Cantilever Microprobes for High-Speed Contact Metrology with 3D Surface Topography

    No full text
    We addressed the coating 5 mm-long cantilever microprobes with a viscoelastic material, which was intended to considerably extend the range of the traverse speed during the measurements of the 3D surface topography by damping contact-induced oscillations. The damping material was composed of epoxy glue, isopropyl alcohol, and glycerol, and its deposition onto the cantilever is described, as well as the tests of the completed cantilevers under free-oscillating conditions and in contact during scanning on a rough surface. The amplitude and phase of the cantilever&rsquo;s fundamental out-of-plane oscillation mode was investigated vs. the damping layer thickness, which was set via repeated coating steps. The resonance frequency and quality factor decreased with the increasing thickness of the damping layer for both the free-oscillating and in-contact scanning operation mode, as expected from viscoelastic theory. A very low storage modulus of E&prime;&asymp;100kPa, a loss modulus of E&Prime;&asymp;434kPa, and a density of &rho;&asymp;1.2gcm&minus;3 were yielded for the damping composite. Almost critical damping was observed with an approximately 130 &micro;m-thick damping layer in the free-oscillating case, which was effective at suppressing the ringing behavior during the high-speed in-contact probing of the rough surface topography
    corecore