109 research outputs found

    Religion & Relationships

    Get PDF
    When David and Leah decided to get married, they had never even been on a first date. They’d never kissed, or even held hands. They weren’t in love, and they had known each other for less than a month

    Self-Supervised Traffic Advisors: Distributed, Multi-view Traffic Prediction for Smart Cities

    Full text link
    Connected and Autonomous Vehicles (CAVs) are becoming more widely deployed, but it is unclear how to best deploy smart infrastructure to maximize their capabilities. One key challenge is to ensure CAVs can reliably perceive other agents, especially occluded ones. A further challenge is the desire for smart infrastructure to be autonomous and readily scalable to wide-area deployments, similar to modern traffic lights. The present work proposes the Self-Supervised Traffic Advisor (SSTA), an infrastructure edge device concept that leverages self-supervised video prediction in concert with a communication and co-training framework to enable autonomously predicting traffic throughout a smart city. An SSTA is a statically-mounted camera that overlooks an intersection or area of complex traffic flow that predicts traffic flow as future video frames and learns to communicate with neighboring SSTAs to enable predicting traffic before it appears in the Field of View (FOV). The proposed framework aims at three goals: (1) inter-device communication to enable high-quality predictions, (2) scalability to an arbitrary number of devices, and (3) lifelong online learning to ensure adaptability to changing circumstances. Finally, an SSTA can broadcast its future predicted video frames directly as information for CAVs to run their own post-processing for the purpose of control.Comment: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC

    Connected Autonomous Vehicle Motion Planning with Video Predictions from Smart, Self-Supervised Infrastructure

    Full text link
    Connected autonomous vehicles (CAVs) promise to enhance safety, efficiency, and sustainability in urban transportation. However, this is contingent upon a CAV correctly predicting the motion of surrounding agents and planning its own motion safely. Doing so is challenging in complex urban environments due to frequent occlusions and interactions among many agents. One solution is to leverage smart infrastructure to augment a CAV's situational awareness; the present work leverages a recently proposed "Self-Supervised Traffic Advisor" (SSTA) framework of smart sensors that teach themselves to generate and broadcast useful video predictions of road users. In this work, SSTA predictions are modified to predict future occupancy instead of raw video, which reduces the data footprint of broadcast predictions. The resulting predictions are used within a planning framework, demonstrating that this design can effectively aid CAV motion planning. A variety of numerical experiments study the key factors that make SSTA outputs useful for practical CAV planning in crowded urban environments.Comment: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC

    Widespread bone-based fluorescence in chameleons

    Get PDF
    Fluorescence is widespread in marine organisms but uncommon in terrestrial tetrapods. We here show that many chameleon species have bony tubercles protruding from the skull that are visible through their scales, and fluoresce under UV light. Tubercles arising from bones of the skull displace all dermal layers other than a thin, transparent layer of epidermis, creating a 'window' onto the bone. In the genus Calumma, the number of these tubercles is sexually dimorphic in most species, suggesting a signalling role, and also strongly reflects species groups, indicating systematic value of these features. Co-option of the known fluorescent properties of bone has never before been shown, yet it is widespread in the chameleons of Madagascar and some African chameleon genera, particularly in those genera living in forested, humid habitats known to have a higher relative component of ambient UV light. The fluorescence emits with a maximum at around 430 nm in blue colour which contrasts well to the green and brown background reflectance of forest habitats. This discovery opens new avenues in the study of signalling among chameleons and sexual selection factors driving ornamentation

    Risk-Based Consumption Advice for Farmed Atlantic and Wild Pacific Salmon Contaminated with Dioxins and Dioxin-like Compounds

    Get PDF
    We reported recently that several organic contaminants occurred at elevated concentrations in farmed Atlantic salmon compared with concentrations of the same contaminants in wild Pacific salmon [Hites et al. Science 303:226–229 (2004)]. We also found that polychlorinated biphenyls (PCBs), toxaphene, dieldrin, dioxins, and polybrominated diphenyl ethers occurred at higher concentrations in European farm-raised salmon than in farmed salmon from North and South America. Health risks (based on a quantitative cancer risk assessment) associated with consumption of farmed salmon contaminated with PCBs, toxaphene, and dieldrin were higher than risks associated with exposure to the same contaminants in wild salmon. Here we present information on cancer and noncancer health risks of exposure to dioxins in farmed and wild salmon. The analysis is based on a tolerable intake level for dioxin-like compounds established by the World Health Organization and on risk estimates for human exposure to dioxins developed by the U.S. Environmental Protection Agency. Consumption of farmed salmon at relatively low frequencies results in elevated exposure to dioxins and dioxin-like compounds with commensurate elevation in estimates of health risk

    Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis

    Get PDF
    Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3–XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A–dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis

    Chronic Wasting Disease: The Effects of Environmental Prion Density and Interactions Between Populations on Disease Dynamics

    Full text link
    27 pages, 1 article*Chronic Wasting Disease: The Effects of Environmental Prion Density and Interactions Between Populations on Disease Dynamics* (Hurtado, Paul; Mejran, Marcin; Morales, Thela; Schwager, David; Lanham, Michael) 27 page

    A novel angiotensin I-converting enzyme mutation (S333W) impairs N-domain enzymatic cleavage of the anti-fibrotic peptide, AcSDKP

    Get PDF
    BACKGROUND: Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis. RESULTS: We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In silico analysis demonstrated S333W localized in the S 1 pocket of the active site of the N domain with the bulky Trp adversely affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE. Conclusions and Significance A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory tetrapeptide in blood and tissues), may confer protection against fibrosis
    corecore