369 research outputs found

    FDG-PET Lacks Sufficient Sensitivity to Detect Myxoid Liposarcoma Spinal Metastases Detected by MRI

    Get PDF
    Purpose. To document a case of myxoid liposarcoma in which PET scan was less sensitive than MRI in detecting spinal metastasis. Materials and Methods. The case of a 65-year-old female with a history of myxoid liposarcoma (MLS) of the thigh resected 5 years previously and now presenting with low back pain is presented. Her medical oncologist ordered an FDG-PET scan to evaluate distant recurrence. Subsequently, an MRI of her spine was obtained by her surgeon. Results. The FDG-PET scan was obtained 1 week prior to the MRI, and it did not show increased glucose uptake in the spine. Her MRI did show increased signal intensity in her lumbar spine. CT needle biopsy confirmed the lesion to be metastatic MLS. Conclusion. FDG-PET scans are utilized to detect distant recurrence of cancerous lesions. Myxoid liposarcoma has a unique propensity to metastasize to the spine. Previous reports have documented the unreliability of bone scintigraphy to diagnose these metastases. Our report demonstrates that FDG-PET may also lack the sensitivity needed to detect these lesions. We advocate total spine MRI when screening for metastases in this population when they present with back pain

    Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma.

    Get PDF
    Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (<30% positive cells) staining, 15 tumors (25.42%) had 2+ (31% to 60% positive cells) staining, and 15 tumors (25.42%) demonstrated 3+ (61% to 100% positive cells) staining. Brachyury nuclear staining was detected more frequently in sacral chordomas than in chordomas of the mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma

    Intraosseous Synovial Sarcoma of the Proximal Tibia

    Get PDF
    Synovial Sarcoma is a malignant mesenchymal tumor that comprises 5–10% of all soft tissue sarcomas. The mean age of onset is thirty years old. Intraosseous presentation is very rare and has only been documented a few times. We report herein a case of a 53-year-old man with synovial sarcoma arising in the left proximal tibia. The patient underwent a wide surgical resection and reconstruction, followed by adjuvant chemotherapy. Three years later, the patient developed a local recurrence that resulted in an above-the-knee amputation. Eight months later, the patient has completed chemotherapy and is without signs of recurrence. The current recommended treatment for synovial sarcoma is wide surgical resection followed by chemotherapy as well as long-term followup. Despite improved surgical techniques, long-term survival rates remain low

    Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients:A Clinical Prediction Model Using Machine Learning Algorithms

    Get PDF
    INTRODUCTION: Postoperative delirium in geriatric hip fracture patients adversely affects clinical and functional outcomes and increases costs. A preoperative prediction tool to identify high-risk patients may facilitate optimal use of preventive interventions. The purpose of this study was to develop a clinical prediction model using machine learning algorithms for preoperative prediction of postoperative delirium in geriatric hip fracture patients. MATERIALS & METHODS: Geriatric patients undergoing operative hip fracture fixation were queried in the American College of Surgeons National Surgical Quality Improvement Program database (ACS NSQIP) from 2016 through 2019. A total of 28 207 patients were included, of which 8030 (28.5%) developed a postoperative delirium. First, the dataset was randomly split 80:20 into a training and testing subset. Then, a random forest (RF) algorithm was used to identify the variables predictive for a postoperative delirium. The machine learning-model was developed on the training set and the performance was assessed in the testing set. Performance was assessed by discrimination (c-statistic), calibration (slope and intercept), overall performance (Brier-score), and decision curve analysis. RESULTS: The included variables identified using RF algorithms were (1) age, (2) ASA class, (3) functional status, (4) preoperative dementia, (5) preoperative delirium, and (6) preoperative need for mobility-aid. The clinical prediction model reached good discrimination (c-statistic = .79), almost perfect calibration (intercept = −.01, slope = 1.02), and excellent overall model performance (Brier score = .15). The clinical prediction model was deployed as an open-access web-application: https://sorg-apps.shinyapps.io/hipfxdelirium/. DISCUSSION & CONCLUSIONS: We developed a clinical prediction model that shows promise in estimating the risk of postoperative delirium in geriatric hip fracture patients. The clinical prediction model can play a beneficial role in decision-making for preventative measures for patients at risk of developing a delirium. If found to be externally valid, clinicians might use the available web-based application to help incorporate the model into clinical practice to aid decision-making and optimize preoperative prevention efforts

    Minimally Invasive Posterior Stabilization Improved Ambulation and Pain Scores in Patients with Plasmacytomas and/or Metastases of the Spine

    Get PDF
    Background. The incidence of spine metastasis is expected to increase as the population ages, and so is the number of palliative spinal procedures. Minimally invasive procedures are attractive options in that they offer the theoretical advantage of less morbidity. Purpose. The purpose of our study was to evaluate whether minimally invasive posterior spinal instrumentation provided significant pain relief and improved function. Study Design. We compared pre- and postoperative pain scores as well as ambulatory status in a population of patients suffering from oncologic conditions in the spine. Patient Sample. A consecutive series of patients with spine tumors treated minimally invasively with stabilization were reviewed. Outcome Measures. Visual analog pain scale as well as pre- and postoperative ambulatory status were used as outcome measures. Methods. Twenty-four patients who underwent minimally invasive posterior spinal instrumentation for metastasis were retrospectively reviewed. Results. Seven (29%) patients were unable to ambulate secondary to pain and instability prior to surgery. All patients were ambulating within 2 to 3 days after having surgery (P = 0.01). The mean visual analog scale value for the preoperative patients was 2.8, and the mean postoperative value was 1.0 (P = 0.001). Conclusion. Minimally invasive posterior spinal instrumentation significantly improved pain and ambulatory status in this series

    Augmented and virtual reality in spine surgery, current applications and future potentials

    Get PDF
    BACKGROUND CONTEXT: The field of artificial intelligence (AI) is rapidly advancing, especially with recent improvements in deep learning (DL) techniques. Augmented (AR) and virtual reality (VR) are finding their place in healthcare, and spine surgery is no exception. The unique capabilities and advantages of AR and VR devices include their low cost, flexible integration with other technologies, user-friendly features and their application in navigation systems, which makes them beneficial across different aspects of spine surgery. Despite the use of AR for pedicle screw placement, targeted cervical foraminotomy, bone biopsy, osteotomy planning, and percutaneous intervention, the current applications of AR and VR in spine surgery remain limited. PURPOSE: The primary goal of this study was to provide the spine surgeons and clinical researchers with the general information about the current applications, future potentials, and accessibility of AR and VR systems in spine surgery. STUDY DESIGN/SETTING: We reviewed titles of more than 250 journal papers from google scholar and PubMed with search words: augmented reality, virtual reality, spine surgery, and orthopaedic, out of which 89 related papers were selected for abstract review. Finally, full text of 67 papers were analyzed and reviewed. METHODS: The papers were divided into four groups: technological papers, applications in surgery, applications in spine education and training, and general application in orthopaedic. A team of two reviewers performed paper reviews and a thorough web search to ensure the most updated state of the art in each of four group is captured in the review. RESULTS: In this review we discuss the current state of the art in AR and VR hardware, their preoperative applications and surgical applications in spine surgery. Finally, we discuss the future potentials of AR and VR and their integration with AI, robotic surgery, gaming, and wearables. CONCLUSIONS: AR and VR are promising technologies that will soon become part of standard of care in spine surgery. (C) 2021 Published by Elsevier Inc

    Does the SORG Orthopaedic Research Group Hip Fracture Delirium Algorithm Perform Well on an Independent Intercontinental Cohort of Patients With Hip Fractures Who Are 60 Years or Older?

    Get PDF
    Background Postoperative delirium in patients aged 60 years or older with hip fractures adversely affects clinical and functional outcomes. The economic cost of delirium is estimated to be as high as USD 25,000 per patient, with a total budgetary impact between USD 6.6 to USD 82.4 billion annually in the United States alone. Forty percent of delirium episodes are preventable, and accurate risk stratification can decrease the incidence and improve clinical outcomes in patients. A previously developed clinical prediction model (the SORG Orthopaedic Research Group hip fracture delirium machine-learning algorithm) is highly accurate on internal validation (in 28,207 patients with hip fractures aged 60 years or older in a US cohort) in identifying at-risk patients, and it can facilitate the best use of preventive interventions; however, it has not been tested in an independent population. For an algorithm to be useful in real life, it must be valid externally, meaning that it must perform well in a patient cohort different from the cohort used to "train" it. With many promising machine-learning prediction models and many promising delirium models, only few have also been externally validated, and even fewer are international validation studies. Question/purpose Does the SORG hip fracture delirium algorithm, initially trained on a database from the United States, perform well on external validation in patients aged 60 years or older in Australia and New Zealand? Methods We previously developed a model in 2021 for assessing risk of delirium in hip fracture patients using records of 28,207 patients obtained from the American College of Surgeons National Surgical Quality Improvement Program. Variables included in the original model included age, American Society of Anesthesiologists (ASA) class, functional status (independent or partially or totally dependent for any activities of daily living), preoperative dementia, preoperative delirium, and preoperative need for a mobility aid. To assess whether this model could be applied elsewhere, we used records from an international hip fracture registry. Between June 2017 and December 2018, 6672 patients older than 60 years of age in Australia and New Zealand were treated surgically for a femoral neck, intertrochanteric hip, or subtrochanteric hip fracture and entered into the Australian & New Zealand Hip Fracture Registry. Patients were excluded if they had a pathological hip fracture or septic shock. Of all patients, 6% (402 of 6672) did not meet the inclusion criteria, leaving 94% (6270 of 6672) of patients available for inclusion in this retrospective analysis. Seventy-one percent (4249 of 5986) of patients were aged 80 years or older, after accounting for 5% (284 of 6270) of missing values; 68% (4292 of 6266) were female, after accounting for 0.06% (4 of 6270) of missing values, and 83% (4690 of 5661) of patients were classified as ASA III/IV, after accounting for 10% (609 of 6270) of missing values. Missing data were imputed using the missForest methodology. In total, 39% (2467 of 6270) of patients developed postoperative delirium. The performance of the SORG hip fracture delirium algorithm on the validation cohort was assessed by discrimination, calibration, Brier score, and a decision curve analysis. Discrimination, known as the area under the receiver operating characteristic curves (c-statistic), measures the model's ability to distinguish patients who achieved the outcomes from those who did not and ranges from 0.5 to 1.0, with 1.0 indicating the highest discrimination score and 0.50 the lowest. Calibration plots the predicted versus the observed probabilities, a perfect plot has an intercept of 0 and a slope of 1. The Brier score calculates a composite of discrimination and calibration, with 0 indicating perfect prediction and 1 the poorest. Results The SORG hip fracture algorithm, when applied to an external patient cohort, distinguished between patients at low risk and patients at moderate to high risk of developing postoperative delirium. The SORG hip fracture algorithm performed with a c-statistic of 0.74 (95% confidence interval 0.73 to 0.76). The calibration plot showed high accuracy in the lower predicted probabilities (intercept -0.28, slope 0.52) and a Brier score of 0.22 (the null model Brier score was 0.24). The decision curve analysis showed that the model can be beneficial compared with no model or compared with characterizing all patients as at risk for developing delirium. Conclusion Algorithms developed with machine learning are a potential tool for refining treatment of at-risk patients. If high-risk patients can be reliably identified, resources can be appropriately directed toward their care. Although the current iteration of SORG should not be relied on for patient care, it suggests potential utility in assessing risk. Further assessment in different populations, made easier by international collaborations and standardization of registries, would be useful in the development of universally valid prediction models. The model can be freely accessed at: https://sorg-apps.shinyapps.io/hipfxdelirium/

    Measuring and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector

    Full text link
    Wind-induced pointing errors are a serious concern for large-aperture high-frequency radio telescopes. In this paper, we describe the implementation of an optical quadrant detector instrument that can detect and provide a correction signal for wind-induced pointing errors on the 100m diameter Green Bank Telescope (GBT). The instrument was calibrated using a combination of astronomical measurements and metrology. We find that the main wind-induced pointing errors on time scales of minutes are caused by the feedarm being blown along the direction of the wind vector. We also find that wind-induced structural excitation is virtually non-existent. We have implemented offline software to apply pointing corrections to the data from imaging instruments such as the MUSTANG 3.3 mm bolometer array, which can recover ~70% of sensitivity lost due to wind-induced pointing errors. We have also performed preliminary tests that show great promise for correcting these pointing errors in real-time using the telescope's subreflector servo system in combination with the quadrant detector signal.Comment: 17 pages, 11 figures; accepted for publication in PAS
    corecore