46 research outputs found

    Thermodynamics of the ATPase Cycle of GlcV, the Nucleotide-Binding Domain of the Glucose ABC Transporter of Sulfolobus solfataricus

    Get PDF
    ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize the transport reaction. Binding of ATP to the NBD monomer results in formation of a NBD dimer. Hydrolysis of the ATP drives the dissociation of the dimer. The thermodynamics of distinct steps in the ATPase cycle of GlcV, the NBD of the glucose ABC transporter of the extreme thermoacidophile Sulfolobus solfataricus, were studied by isothermal titration calorimetry using the wild-type protein and two mutants, which are arrested at different steps in the ATP hydrolytic cycle. The G144A mutant is unable to dimerize, while the E166A mutant is defective in dimer dissociation. The ATP, ADP, and AMP-PNP binding affinities, stoichiometries, and enthalpies of binding were determined at different temperatures. From these data, the thermodynamic parameters of nucleotide binding, NBD dimerization, and ATP hydrolysis were calculated. The data demonstrate that the ATP hydrolysis cycle of isolated NBDs consists of consecutive steps where only the final step of ADP release is energetically unfavorable.

    Functional Characterization of Amphipathic alpha-Helix in the Osmoregulatory ABC Transporter OpuA

    Get PDF
    The ATP-binding-cassette transporter OpuA from Lactococcus lactis is composed of two ATPase subunits (OpuAA) and two subunits (OpuABC) with the transmembrane domain fused to an extracellular substrate-binding protein. Of the almost 1900 homologues of OpuA known to date, a subset has an amino-terminal amphipathic helix (plus extra transmembrane segment) fused to the core of the transmembrane domain of the OpuABC subunit. FRET measurements indicate that the amphipathic alpha-helix is located close to the membrane surface, where its hydrophobic face interacts with the transport protein rather than the membrane lipids. Next, we determined the functional role of this accessory region by engineering the amphipathic alpha-helix. We analyzed the consequence of the mutations in intact cells by monitoring growth and transport of glycine betaine under normal and osmotic stress conditions. More detailed studies were performed in hybrid membrane vesicles, proteoliposomes, and bilayer nanodisks. We show that the amphipathic alpha-helix of OpuA is necessary for high activity of OpuA but is not critical for the biogenesis of the protein or the ionic regulation of transport

    The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane

    Get PDF
    The mannitol permease (EIIMtl) from Escherichia coli couples mannitol transport to phosphorylation of the substrate. Renewed topology prediction of the membrane-embedded C domain suggested that EIIMtl contains more membrane-embedded segments than the six proposed previously on the basis of a PhoA fusion study. Cysteine accessibility was used to confirm this notion. Since cysteine 384 in the cytoplasmic B domain is crucial for the phosphorylation activity of EIIMtl, all cysteine mutants contained this activity-linked cysteine residue in addition to those introduced for probing the membrane topology of the protein. To distinguish between the activity-linked cysteine and the probed cysteine, either trypsin was used to specifically digest the two cytoplasmic domains (A and B), thereby removing Cys384, or Cys384 was protected by phosphorylation from alkylation by N-ethylmaleimide (NEM). Our data show that upon phosphorylation EIIMtl undergoes major conformational changes, whereby residues in the putative first cytoplasmic loop become accessible to NEM. Other residues in this loop were accessible to NEM in intact cells and inside-out membrane vesicles, but cysteine residues at these positions only reacted with the membrane-impermeable sulfhydryl reagent from the periplasmic side of the protein. These and other results suggest that the predicted loop between TM2 and TM3 may fold back into the membrane and form part of the translocation path

    The NMR side-chain assignments and solution structure of enzyme IIBcellobiose of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli

    Get PDF
    The assignment of the side-chain Nh IR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments.In order to obtain the three-dimensional structure, NOE data were collected from N-15-NOESY-HSQC, C-13-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 Angstrom, on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.</p

    Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA

    Get PDF
    (Micro)organisms are exposed to fluctuating environmental conditions, and adaptation to stress is essential for survival. Increased osmolality (hypertonicity) causes outflow of water and loss of turgor and is dangerous if the cell is not capable of rapidly restoring its volume. The osmoregulatory adenosine triphosphate-binding cassette transporter OpuA restores the cell volume by accumulating large amounts of compatible solute. OpuA is gated by ionic strength and inhibited by the second messenger cyclic-di-AMP, a molecule recently shown to affect many cellular processes. Despite the master regulatory role of cyclic-di-AMP, structural and functional insights into how the second messenger regulates (transport) proteins on the molecular level are lacking. Here, we present high-resolution cryo-electron microscopy structures of OpuA and in vitro activity assays that show how the osmoregulator OpuA is activated by high ionic strength and how cyclic-di-AMP acts as a backstop to prevent unbridled uptake of compatible solutes

    Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor

    Get PDF
    Protein conformations play crucial roles in most, if not all, biological processes. Here we show that the current carried through a nanopore by ions allows monitoring conformational changes of single and native substrate-binding domains (SBD) of an ATP-Binding Cassette importer in real-time. Comparison with single-molecule Förster Resonance Energy Transfer and ensemble measurements revealed that proteins trapped inside the nanopore have bulk-like properties. Two ligand-free and two ligand-bound conformations of SBD proteins were inferred and their kinetic constants were determined. Remarkably, internalized proteins aligned with the applied voltage bias, and their orientation could be controlled by the addition of a single charge to the protein surface. Nanopores can thus be used to immobilize proteins on a surface with a specific orientation, and will be employed as nanoreactors for single-molecule studies of native proteins. Moreover, nanopores with internal protein adaptors might find further practical applications in multianalyte sensing devices
    corecore