12 research outputs found

    Comparison of two methods for the assessment of intra-erythrocyte magnesium and its determinants:Results from the LifeLines cohort study

    Get PDF
    BACKGROUND: Direct methods for the assessment of intra-erythrocyte magnesium (dIEM) require extensive sample preparation, making them labor intensive. An alternative, less labor intensive method is indirect calculation of intra-erythrocyte magnesium (iIEM). We compared dIEM and iIEM and studied determinants of dIEM and iIEM, plasma magnesium and 24-h urinary magnesium excretion in a large population-based cohort study. METHODS: dIEM and iIEM were measured using a validated inductively coupled plasma mass spectrometry (ICP-MS) method in 1669 individuals from the second screening from the LifeLines Cohort Study. We used linear regression analyses to study the determinants of IEM, plasma magnesium and 24-h urinary magnesium excretion. RESULTS: Mean dIEM and iIEM were 0.20 ± 0.04 mmol/1012 cells and 0.25 ± 0.04 mmol/1012 cells, respectively. We found a strong correlation between dIEM and iIEM (r = 0.75). Passing-Bablok regression analyses showed an intercept of 0.015 (95% CI: 0.005; 0.023) and a slope of 1.157 (95% CI: 1.109; 1.210). In linear regression analyses, plasma levels of total- and LDL -cholesterol, and triglycerides were positively associated dIEM, iIEM, and plasma magnesium, while glucose and HbA1c were inversely associated with plasma magnesium. CONCLUSIONS: We observed a strong correlation between dIEM and iIEM, suggesting that iIEM is a reliable alternative for the labor intensive dIEM method

    Fibroblast growth factor 21 and protein energy wasting in hemodialysis patients

    Get PDF
    INTRODUCTION: Protein energy wasting (PEW) is the most important risk factor for morbidity and mortality in hemodialysis patients. Inadequate dietary protein intake is a frequent cause of PEW. Recent studies have identified fibroblast growth factor 21 (FGF21) as an endocrine protein sensor. This study aims to investigate the potential of FGF21 as a biomarker for protein intake and PEW and to investigate intradialytic FGF21 changes. METHODS: Plasma FGF21 was measured using an enzyme-linked immunoassay. Complete intradialytic dialysate and interdialytic urinary collections were used to calculate 24-h urea excretion and protein intake. Muscle mass was assessed using the creatinine excretion rate and fatigue was assessed using the Short Form 36 and the Checklist Individual Strength. RESULTS: Out of 59 hemodialysis patients (65 ± 15 years, 63% male), 39 patients had a low protein intake, defined as a protein intake less than 0.9 g/kg/24-h. Patients with a low protein intake had nearly twofold higher plasma FGF21 compared to those with an adequate protein intake (FGF21 1370 [795-4034] pg/mL versus 709 [405-1077] pg/mL;P < 0.001). Higher plasma FGF21 was associated with higher odds of low protein intake (Odds Ratio: 3.18 [1.62-7.95] per doubling of FGF21; P = 0.004), independent of potential confounders. Higher plasma FGF21 was also associated with lower muscle mass (std β: -0.34 [-0.59;-0.09];P = 0.009), lower vitality (std β: -0.30 [-0.55;-0.05];P = 0.02), and more fatigue (std β: 0.32 [0.07;0.57];P = 0.01). During hemodialysis plasma FGF21 increased by 354 [71-570] pg/mL, corresponding to a 29% increase. CONCLUSION: Higher plasma FGF21 is associated with higher odds of low protein intake in hemodialysis patients. Secondarily, plasma FGF21 is also associated with lower muscle mass, less vitality, and more fatigue. Lastly, there is an intradialytic increase in plasma FGF21. FGF21 could be a valuable marker allowing for objective assessment of PEW

    Creatine homeostasis and protein energy wasting in hemodialysis patients

    Get PDF
    Muscle wasting, low protein intake, hypoalbuminemia, low body mass, and chronic fatigue are prevalent in hemodialysis patients. Impaired creatine status may be an often overlooked, potential contributor to these symptoms. However, little is known about creatine homeostasis in hemodialysis patients. We aimed to elucidate creatine homeostasis in hemodialysis patients by assessing intradialytic plasma changes as well as intra- and interdialytic losses of arginine, guanidinoacetate, creatine and creatinine. Additionally, we investigated associations of plasma creatine concentrations with low muscle mass, low protein intake, hypoalbuminemia, low body mass index, and chronic fatigue. Arginine, guanidinoacetate, creatine and creatinine were measured in plasma, dialysate, and urinary samples of 59 hemodialysis patients. Mean age was 65 ± 15 years and 63% were male. During hemodialysis, plasma concentrations of arginine (77 ± 22 to 60 ± 19 μmol/L), guanidinoacetate (1.8 ± 0.6 to 1.0 ± 0.3 μmol/L), creatine (26 [16–41] to 21 [15–30] μmol/L) and creatinine (689 ± 207 to 257 ± 92 μmol/L) decreased (all P < 0.001). During a hemodialysis session, patients lost 1939 ± 871 μmol arginine, 37 ± 20 μmol guanidinoacetate, 719 [399–1070] μmol creatine and 15.5 ± 8.4 mmol creatinine. In sex-adjusted models, lower plasma creatine was associated with a higher odds of low muscle mass (OR per halving: 2.00 [1.05–4.14]; P = 0.04), low protein intake (OR: 2.13 [1.17–4.27]; P = 0.02), hypoalbuminemia (OR: 3.13 [1.46–8.02]; P = 0.008) and severe fatigue (OR: 3.20 [1.52–8.05]; P = 0.006). After adjustment for potential confounders, these associations remained materially unchanged. Creatine is iatrogenically removed during hemodialysis and lower plasma creatine concentrations were associated with higher odds of low muscle mass, low protein intake, hypoalbuminemia, and severe fatigue, indicating a potential role for creatine supplementation.ISSN:1479-587

    The association between use of proton-pump inhibitors and excess mortality after kidney transplantation:A cohort study

    Get PDF
    Background Chronic use of proton-pump inhibitors (PPIs) is common in kidney transplant recipients (KTRs). However, concerns are emerging about the potential long-term complications of PPI therapy. We aimed to investigate whether PPI use is associated with excess mortality risk in KTRs. Methods and findings We investigated the association of PPI use with mortality risk using multivariable Cox proportional hazard regression analyses in a single-center prospective cohort of 703 stable outpatient KTRs, who visited the outpatient clinic of the University Medical Center Groningen (UMCG) between November 2008 and March 2011 (ClinicalTrials.gov Identifier NCT02811835). Independent replication of the results was performed in a prospective cohort of 656 KTRs from the University Hospitals Leuven (NCT01331668). Mean age was 53 ± 13 years, 57% were male, and 56.6% used PPIs. During median follow-up of 8.2 (4.7-9.0) years, 194 KTRs died. In univariable Cox regression analyses, PPI use was associated with an almost 2 times higher mortality risk (hazard ratio [HR] 1.86, 95% CI 1.38-2.52, P 20 mg omeprazole equivalents/ day) compared with patients taking no PPIs (HR 2.14, 95% CI 1.48-3.09, P < 0.001) was higher than in KTRs taking a low PPI dose (HR 1.72, 95% CI 1.23-2.39, P = 0.001). These findings were replicated in the Leuven Renal Transplant Cohort. The main limitation of this study is its observational design, which precludes conclusions about causation. Conclusions We demonstrated that PPI use is associated with an increased mortality risk in KTRs, independent of potential confounders. Moreover, our data suggest that this risk is highest among KTRs taking high PPI dosages. Because of the observational nature of our data, our results require further corroboration before it can be recommended to avoid the long-term use of PPIs in KTRs

    Proton-Pump Inhibitors and Hypomagnesaemia in Kidney Transplant Recipients

    Get PDF
    Proton-pump inhibitors (PPIs) are commonly used after kidney transplantation and there is rarely an incentive to discontinue treatment. In the general population, PPI use has been associated with hypomagnesaemia. We aimed to investigate whether PPI use is associated with plasma magnesium, 24-h urinary magnesium excretion and hypomagnesaemia, in kidney transplant recipients (KTR). Plasma magnesium and 24-h urinary magnesium excretion were measured in 686 stable outpatient KTR with a functioning allograft for >= 1 year from the TransplantLines Food and Nutrition Biobank and Cohort-Study (NCT02811835). PPIs were used by 389 KTR (56.6%). In multivariable linear regression analyses, PPI use was associated with lower plasma magnesium (beta: -0.02, P = 0.02) and lower 24-h urinary magnesium excretion (beta: -0.82, P 0.05). These results demonstrate that PPI use is independently associated with lower magnesium status and hypomagnesaemia in KTR. The concomitant decrease in urinary magnesium excretion indicates that this likely is the consequence of reduced intestinal magnesium absorption. Based on these results, it might be of benefit to monitor magnesium status periodically in KTR on chronic PPI therapy

    Effects of Magnesium Citrate, Magnesium Oxide, and Magnesium Sulfate Supplementation on Arterial Stiffness:A Randomized, Double-Blind, Placebo-Controlled Intervention Trial

    Get PDF
    BACKGROUND: Magnesium supplements may have beneficial effects on arterial stiffness. Yet, to our knowledge, no head‐to‐head comparison between various magnesium formulations in terms of effects on arterial stiffness has been performed. We assessed the effects of magnesium citrate supplementation on arterial stiffness and blood pressure and explored whether other formulations of magnesium have similar effects. METHODS AND RESULTS: In this randomized trial, subjects who were overweight and slightly obese received either magnesium citrate, magnesium oxide, magnesium sulfate, or placebo for 24 weeks. The total daily dose of magnesium was 450 mg/d. The primary outcome was carotid‐to‐femoral pulse wave velocity, which is the gold standard method for measuring arterial stiffness. Secondary outcomes included blood pressure and plasma and urine magnesium. Overall, 164 participants (mean±SD age, 63.2±6.8 years; 104 [63.4%] women) were included. In the intention‐to‐treat analysis, neither magnesium citrate nor the other formulations had an effect on carotid‐to‐femoral pulse wave velocity or blood pressure at 24 weeks compared with placebo. Magnesium citrate increased plasma (+0.04 mmol/L; 95% CI, +0.02 to +0.06 mmol/L) and urine magnesium (+3.12 mmol/24 h; 95% CI, +2.23 to +4.01 mmol/24 h) compared with placebo. Effects on plasma magnesium were similar among the magnesium supplementation groups, but magnesium citrate led to a more pronounced increase in 24‐hour urinary magnesium excretion than magnesium oxide or magnesium sulfate. One serious adverse event was reported, which was considered unrelated to the study treatment. CONCLUSIONS: Oral magnesium citrate supplementation for 24 weeks did not significantly change arterial stiffness or blood pressure. Magnesium oxide and magnesium sulfate had similar nonsignificant effects. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03632590

    Effects of Magnesium Citrate, Magnesium Oxide, and Magnesium Sulfate Supplementation on Arterial Stiffness: A Randomized, Double-Blind, Placebo-Controlled Intervention Trial

    No full text
    Background Magnesium supplements may have beneficial effects on arterial stiffness. Yet, to our knowledge, no head-to-head comparison between various magnesium formulations in terms of effects on arterial stiffness has been performed. We assessed the effects of magnesium citrate supplementation on arterial stiffness and blood pressure and explored whether other formulations of magnesium have similar effects. Methods and Results In this randomized trial, subjects who were overweight and slightly obese received either magnesium citrate, magnesium oxide, magnesium sulfate, or placebo for 24 weeks. The total daily dose of magnesium was 450 mg/d. The primary outcome was carotid-to-femoral pulse wave velocity, which is the gold standard method for measuring arterial stiffness. Secondary outcomes included blood pressure and plasma and urine magnesium. Overall, 164 participants (mean±SD age, 63.2±6.8 years; 104 [63.4%] women) were included. In the intention-to-treat analysis, neither magnesium citrate nor the other formulations had an effect on carotid-to-femoral pulse wave velocity or blood pressure at 24 weeks compared with placebo. Magnesium citrate increased plasma (+0.04 mmol/L; 95% CI, +0.02 to +0.06 mmol/L) and urine magnesium (+3.12 mmol/24 h; 95% CI, +2.23 to +4.01 mmol/24 h) compared with placebo. Effects on plasma magnesium were similar among the magnesium supplementation groups, but magnesium citrate led to a more pronounced increase in 24-hour urinary magnesium excretion than magnesium oxide or magnesium sulfate. One serious adverse event was reported, which was considered unrelated to the study treatment. Conclusions Oral magnesium citrate supplementation for 24 weeks did not significantly change arterial stiffness or blood pressure. Magnesium oxide and magnesium sulfate had similar nonsignificant effects. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03632590

    Effects of Magnesium Citrate, Magnesium Oxide, and Magnesium Sulfate Supplementation on Arterial Stiffness: A Randomized, Double-Blind, Placebo-Controlled Intervention Trial

    No full text
    BACKGROUND: Magnesium supplements may have beneficial effects on arterial stiffness. Yet, to our knowledge, no head-to-head comparison between various magnesium formulations in terms of effects on arterial stiffness has been performed. We assessed the effects of magnesium citrate supplementation on arterial stiffness and blood pressure and explored whether other formulations of magnesium have similar effects. METHODS AND RESULTS: In this randomized trial, subjects who were overweight and slightly obese received either magnesium citrate, magnesium oxide, magnesium sulfate, or placebo for 24 weeks. The total daily dose of magnesium was 450 mg/d. The primary outcome was carotid-to-femoral pulse wave velocity, which is the gold standard method for measuring arterial stiff-ness. Secondary outcomes included blood pressure and plasma and urine magnesium. Overall, 164 participants (mean±SD age, 63.2±6.8 years; 104 [63.4%] women) were included. In the intention-to-treat analysis, neither magnesium citrate nor the other formulations had an effect on carotid-to-femoral pulse wave velocity or blood pressure at 24 weeks compared with placebo. Magnesium citrate increased plasma (+0.04 mmol/L; 95% CI, +0.02 to +0.06 mmol/L) and urine magnesium (+3.12 mmol/24 h; 95% CI, +2.23 to +4.01 mmol/24 h) compared with placebo. Effects on plasma magnesium were similar among the magnesium supplementation groups, but magnesium citrate led to a more pronounced increase in 24-hour urinary magnesium excretion than magnesium oxide or magnesium sulfate. One serious adverse event was reported, which was considered unrelated to the study treatment. CONCLUSIONS: Oral magnesium citrate supplementation for 24 weeks did not significantly change arterial stiffness or blood pressure. Magnesium oxide and magnesium sulfate had similar nonsignificant effects. REGISTRATION: URL: https://www.clini​caltr​ials.gov; Unique identifier: NCT03632590

    Effects of magnesium citrate, magnesium oxide and magnesium sulfate supplementation on arterial stiffness in healthy overweight individuals: a study protocol for a randomized controlled trial

    Get PDF
    BackgroundArterial stiffness is closely related to the process of atherosclerosis, an independent cardiovascular risk factor, and predictive of future cardiovascular events and mortality. Recently, we showed that magnesium citrate supplementation results in a clinically relevant improvement of arterial stiffness. It remained unclear whether the observed effect was due to magnesium or citrate, and whether other magnesium compounds may have similar effects. Therefore, we aim to study the long-term effects of magnesium citrate, magnesium oxide and magnesium sulfate on arterial stiffness. In addition, we aim to investigate possible underlying mechanisms, including changes in blood pressure and changes in gut microbiota diversity.MethodsIn this randomized, double-blind, placebo-controlled trial, a total of 162 healthy overweight and slightly obese men and women will be recruited. During a 24-week intervention, individuals will be randomized to receive: magnesium citrate; magnesium oxide; magnesium sulfate (total daily dose of magnesium for each active treatment 450mg); or placebo. The primary outcome of the study is arterial stiffness measured by the carotid-femoral pulse wave velocity (PWVc-f), which is the gold standard for quantifying arterial stiffness. Secondary outcomes are office blood pressure, measured by a continuous blood pressure monitoring device, and gut microbiota, measured in fecal samples. Measurements will be performed at baseline and at weeks 2, 12 and 24.DiscussionThe present study is expected to provide evidence for the effects of different available magnesium formulations (organic and inorganic) on well-established cardiovascular risk markers, including arterial stiffness and blood pressure, as well as on the human gut microbiota. As such, the study may contribute to the primary prevention of cardiovascular disease in slightly obese, but otherwise healthy, individuals.Trial registrationClinicalTrials.gov, NCT03632590. Retrospectively registered on 15 August 2018
    corecore