17 research outputs found

    Lower fractional anisotropy without evidence for neuro-inflammation in patients with early-phase schizophrenia spectrum disorders

    Get PDF
    Various lines of research suggest immune dysregulation as a potential therapeutic target for negative and cognitive symptoms in schizophrenia spectrum disorders (SSD). Immune dysregulation would lead to higher extracellular free-water (EFW) in cerebral white matter (WM), which may partially underlie the frequently reported lower fractional anisotropy (FA) in SSD. We aim to investigate differences in EFW concentrations – a presumed proxy for neuro-inflammation – between early-phase SSD patients (n = 55) and healthy controls (HC; n = 37), and to explore immunological and cognitive correlates. To increase specificity for EFW, we study several complementary magnetic resonance imaging contrasts that are sensitive to EFW. FA, mean diffusivity (MD), magnetization transfer ratio (MTR), myelin water fraction (MWF) and quantitative T1 and T2 were calculated from diffusion-weighted imaging (DWI), magnetization transfer imaging (MTI) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT). For each measure, WM skeletons were constructed with tract-based spatial statistics. Multivariate SSD-HC comparisons with WM skeletons and their average values (i.e. global WM) were not statistically significant. In voxel-wise analyses, FA was significantly lower in SSD in the genu of the corpus callosum and in the left superior longitudinal fasciculus (p < 0.04). Global WM measures did not correlate with immunological markers (i.e. IL1-RA, IL-6, IL-8, IL-10 and CRP) or cognition in HC and SSD after corrections for multiple comparisons. We confirmed lower FA in early-phase SSD patients. However, non–FA measures did not provide additional evidence for immune dysregulation or for higher EFW as the primary mechanism underlying the reported lower FA values in SSD

    Auditory hallucinations, top-down processing and language perception: a general population study

    Get PDF
    Background: Studies investigating the underlying mechanisms of hallucinations in patients with schizophrenia suggest that an imbalance in top-down expectations v. bottom-up processing underlies these errors in perception. This study evaluates this hypothesis by testing if individuals drawn from the general population who have had auditory hallucinations (AH) have more misperceptions in auditory language perception than those who have never hallucinated. Methods: We used an online survey to determine the presence of hallucinations. Participants filled out the Questionnaire for Psychotic Experiences and participated in an auditory verbal recognition task to assess both correct perceptions (hits) and misperceptions (false alarms). A hearing test was performed to screen for hearing problems. Results: A total of 5115 individuals from the general Dutch population participated in this study. Participants who reported AH in the week preceding the test had a higher false alarm rate in their auditory perception compared with those without such (recent) experiences. The more recent the AH were experienced, the more mistakes participants made. While the presence of verbal AH (AVH) was predictive for false alarm rate in auditory language perception, the presence of non-verbal or visual hallucinations were not. Conclusions: The presence of AVH predicted false alarm rate in auditory language perception, whereas the presence of non-verbal auditory or visual hallucinations was not, suggesting that enhanced top-down processing does not transfer across modalities. More false alarms were observed in participants who reported more recent AVHs. This is in line with models of enhanced influence of top-down expectations in persons who hallucinate.publishedVersio

    Author Correction:Functional connectome differences in individuals with hallucinations across the psychosis continuum (Scientific Reports, (2021), 11, 1, (1108), 10.1038/s41598-020-80657-8)

    Get PDF
    The Supplementary Information published with this Article contained an error, where an old version of Figure S5 was used. This error has now been corrected in the Supplementary Information file that accompanies the original Article. The corrected Supplementary Information file is also linked to this correction notices.</p

    Author Correction:Functional connectome differences in individuals with hallucinations across the psychosis continuum (Scientific Reports, (2021), 11, 1, (1108), 10.1038/s41598-020-80657-8)

    Get PDF
    The Supplementary Information published with this Article contained an error, where an old version of Figure S5 was used. This error has now been corrected in the Supplementary Information file that accompanies the original Article. The corrected Supplementary Information file is also linked to this correction notices

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Atopy increases risk of psychotic experiences : A large population-based study

    No full text
    Introduction: Building upon the comorbidity between atopy and schizophrenia, we conducted a large cross-sectional, observational population-based study to examine if such associations also exist between atopic disorders (eczema, allergic rhinitis, and asthma) and nonclinical psychotic experiences. Methods: We examined psychotic experiences in a Dutch population sample through an online survey (≥14 years of age). Participants filled out the Questionnaire for Psychotic Experiences, together with questions screening for atopic disorders (eczema, allergic rhinitis, and asthma). Prevalence rates were calculated; binary logistic regression was used to determine odds ratios (ORs) (age, gender, and years of education as covariates). Results: We included 6,479 participants. Individuals diagnosed with one or more atopic disorders had an increased risk of psychotic experiences as compared with controls (OR = 1.26). Analysis of individual symptoms revealed an OR of 1.27 for hallucinations, whereas delusions only showed a trend. With each additional atopic disorder, the risk of psychotic experiences increased. This was also observed for hallucinations alone but not for delusions alone. Atopy was associated with hallucinations across all modalities (OR ranging from 1.19 to 1.40). These results did not appear to be driven specifically by any one of the atopic disorders. Conclusion: In the largest population sample of adolescents and adults to date, we found that atopic disorders (asthma, eczema, and allergic rhinitis) increase the risk of psychotic experiences, in a dose-response fashion. These results provide further support for the role of immunological components in the predisposition for psychosis and can serve as a base for further research

    Lower fractional anisotropy without evidence for neuro-inflammation in patients with early-phase schizophrenia spectrum disorders

    No full text
    Various lines of research suggest immune dysregulation as a potential therapeutic target for negative and cognitive symptoms in schizophrenia spectrum disorders (SSD). Immune dysregulation would lead to higher extracellular free-water (EFW) in cerebral white matter (WM), which may partially underlie the frequently reported lower fractional anisotropy (FA) in SSD. We aim to investigate differences in EFW concentrations – a presumed proxy for neuro-inflammation – between early-phase SSD patients (n = 55) and healthy controls (HC; n = 37), and to explore immunological and cognitive correlates. To increase specificity for EFW, we study several complementary magnetic resonance imaging contrasts that are sensitive to EFW. FA, mean diffusivity (MD), magnetization transfer ratio (MTR), myelin water fraction (MWF) and quantitative T1 and T2 were calculated from diffusion-weighted imaging (DWI), magnetization transfer imaging (MTI) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT). For each measure, WM skeletons were constructed with tract-based spatial statistics. Multivariate SSD-HC comparisons with WM skeletons and their average values (i.e. global WM) were not statistically significant. In voxel-wise analyses, FA was significantly lower in SSD in the genu of the corpus callosum and in the left superior longitudinal fasciculus (p < 0.04). Global WM measures did not correlate with immunological markers (i.e. IL1-RA, IL-6, IL-8, IL-10 and CRP) or cognition in HC and SSD after corrections for multiple comparisons. We confirmed lower FA in early-phase SSD patients. However, non–FA measures did not provide additional evidence for immune dysregulation or for higher EFW as the primary mechanism underlying the reported lower FA values in SSD

    Lower fractional anisotropy without evidence for neuro-inflammation in patients with early-phase schizophrenia spectrum disorders

    No full text
    Various lines of research suggest immune dysregulation as a potential therapeutic target for negative and cognitive symptoms in schizophrenia spectrum disorders (SSD). Immune dysregulation would lead to higher extracellular free-water (EFW) in cerebral white matter (WM), which may partially underlie the frequently reported lower fractional anisotropy (FA) in SSD. We aim to investigate differences in EFW concentrations – a presumed proxy for neuro-inflammation – between early-phase SSD patients (n = 55) and healthy controls (HC; n = 37), and to explore immunological and cognitive correlates. To increase specificity for EFW, we study several complementary magnetic resonance imaging contrasts that are sensitive to EFW. FA, mean diffusivity (MD), magnetization transfer ratio (MTR), myelin water fraction (MWF) and quantitative T1 and T2 were calculated from diffusion-weighted imaging (DWI), magnetization transfer imaging (MTI) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT). For each measure, WM skeletons were constructed with tract-based spatial statistics. Multivariate SSD-HC comparisons with WM skeletons and their average values (i.e. global WM) were not statistically significant. In voxel-wise analyses, FA was significantly lower in SSD in the genu of the corpus callosum and in the left superior longitudinal fasciculus (p < 0.04). Global WM measures did not correlate with immunological markers (i.e. IL1-RA, IL-6, IL-8, IL-10 and CRP) or cognition in HC and SSD after corrections for multiple comparisons. We confirmed lower FA in early-phase SSD patients. However, non–FA measures did not provide additional evidence for immune dysregulation or for higher EFW as the primary mechanism underlying the reported lower FA values in SSD

    Childhood trauma is associated with reduced frontal gray matter volume: A large transdiagnostic structural MRI study

    Get PDF
    Background Childhood trauma increases risk for psychopathology and cognitive impairment. Prior research mainly focused on the hippocampus and amygdala in single diagnostic categories. However, other brain regions may be impacted by trauma as well, and effects may be independent of diagnosis. This cross-sectional study investigated cortical and subcortical gray matter volume in relation to childhood trauma severity. Methods We included 554 participants: 250 bipolar-I patients, 84 schizophrenia-spectrum patients and 220 healthy individuals without a psychiatric history. Participants filled in the Childhood Trauma Questionnaire. Anatomical T1 MRI scans were acquired at 3T, regional brain morphology was assessed using Freesurfer. Results In the total sample, trauma-related gray matter reductions were found in the frontal lobe (β = -0.049, p = 0.008; q = 0.048), this effect was driven by the right medial orbitofrontal, paracentral, superior frontal regions and the left precentral region. No trauma-related volume reductions were observed in any other (sub)cortical lobes nor the hippocampus or amygdala, trauma-by-group (i.e. both patient groups and healthy subjects) interaction effects were absent. A categorical approach confirmed a pattern of more pronounced frontal gray matter reductions in individuals reporting multiple forms of trauma and across quartiles of cumulative trauma scores. Similar dose-response patterns were revealed within the bipolar and healthy subgroups, but did not reach significance in schizophrenia-spectrum patients. Conclusions Findings show that childhood trauma is linked to frontal gray matter reductions, independent of psychiatric morbidity. Our results indicate that childhood trauma importantly contributes to the neurobiological changes commonly observed across psychiatric disorders. Frontal volume alterations may underpin affective and cognitive disturbances observed in trauma-exposed individuals

    Childhood trauma is associated with reduced frontal gray matter volume: A large transdiagnostic structural MRI study

    No full text
    Background: Childhood trauma increases risk for psychopathology and cognitive impairment. Prior research mainly focused on the hippocampus and amygdala in single diagnostic categories. However, other brain regions may be impacted by trauma as well, and effects may be independent of diagnosis. This cross-sectional study investigated cortical and subcortical gray matter volume in relation to childhood trauma severity. Methods: We included 554 participants: 250 bipolar-I patients, 84 schizophrenia-spectrum patients and 220 healthy individuals without a psychiatric history. Participants filled in the Childhood Trauma Questionnaire. Anatomical T1 MRI scans were acquired at 3T, regional brain morphology was assessed using Freesurfer. Results: In the total sample, trauma-related gray matter reductions were found in the frontal lobe (β = -0.049, p = 0.008; q = 0.048), this effect was driven by the right medial orbitofrontal, paracentral, superior frontal regions and the left precentral region. No trauma-related volume reductions were observed in any other (sub)cortical lobes nor the hippocampus or amygdala, trauma-by-group (i.e. both patient groups and healthy subjects) interaction effects were absent. A categorical approach confirmed a pattern of more pronounced frontal gray matter reductions in individuals reporting multiple forms of trauma and across quartiles of cumulative trauma scores. Similar dose-response patterns were revealed within the bipolar and healthy subgroups, but did not reach significance in schizophrenia-spectrum patients. Conclusions: Findings show that childhood trauma is linked to frontal gray matter reductions, independent of psychiatric morbidity. Our results indicate that childhood trauma importantly contributes to the neurobiological changes commonly observed across psychiatric disorders. Frontal volume alterations may underpin affective and cognitive disturbances observed in trauma-exposed individuals
    corecore