669 research outputs found

    Thermal stability of ultrasoft Fe–Zr–N films

    Get PDF
    The thermal stability of nanocrystalline ultrasoft magnetic (Fe98Zr2)1−xNx films with x = 0.10–0.25 was studied using thermal desorption spectrometry, positron beam analysis and high resolution transmission electron microscopy. The results demonstrate that grain growth during the heat treatment is accompanied by an increase of the free volume and nitrogen relocation and desorption. All these phenomena can drastically degrade the ultrasoft magnetic properties. The nitrogen desorption has already started at temperatures around 400 K. Nevertheless, most of the nitrogen leaves the sample at a temperature above 800 K. We found that nitrogen out-diffusion is significantly retarded compared with the prediction of the diffusion in bulk α-Fe. A qualitative model is proposed in which the nitrogen out-diffusion in nanocrystalline material is retarded by trapping at immobile defects, namely Zr atoms, and also by voids at grain boundaries. From a certain temperature, nitrogen migrates from the interior of the nanograins to the nanovoids at the grain boundaries and the out-diffusion to the outer surface is controlled by transport between the voids.

    Identifying prognostic factors for clinical outcomes and costs in four high-volume surgical treatments using routinely collected hospital data

    Get PDF
    Identifying prognostic factors (PFs) is often costly and labor-intensive. Routinely collected hospital data provide opportunities to identify clinically relevant PFs and construct accurate prognostic models without additional data-collection costs. This multicenter (66 hospitals) study reports on associations various patient-level variables have with outcomes and costs. Outcomes were in-hospital mortality, intensive care unit (ICU) admission, length of stay, 30-day readmission, 30-day reintervention and in-hospital costs. Candidate PFs were age, sex, Elixhauser Comorbidity Score, prior hospitalizations, prior days spent in hospital, and socio-economic status. Included patients dealt with either colorectal carcinoma (CRC, n = 10,254), urinary bladder carcinoma (UBC, n = 17,385), acute percutaneous coronary intervention (aPCI, n = 25,818), or total knee arthroplasty (TKA, n = 39,214). Prior hospitalization significantly increased readmission risk in all treatments (OR between 2.15 and 25.50), whereas prior days spent in hospital decreased this risk (OR between 0.55 and 0.95). In CRC patients, women had lower risk of in-hospital mortality (OR 0.64), ICU admittance (OR 0.68) and 30-day reintervention (OR 0.70). Prior hospitalization was the strongest PF for higher costs across all treatments (31–64% costs increase/hospitalization). Prognostic model performance (c-statistic) ranged 0.67–0.92, with Brier scores below 0.08. R-squared ranged from 0.06–0.19 for LoS and 0.19–0.38 for costs. Identified PFs should be considered as building blocks for treatment-specific prognostic models and information for monitoring patients after surgery. Researchers and clinicians might benefit from gaining a better insight into the drivers behind (costs) prognosis

    Nanocavity formation processes in MgO(100) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    Get PDF
    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10^16 cm–2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2–3 nm and length/width 5–10 nm) have a perfectly rectangular shape bounded by {100} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO

    Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Get PDF
    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10(16) Cd ions cm(-2) and 210 keV, 1 x 10(16) Se ions cm(-2) in single crystals of MgO(001) and subsequent thermal annealing at a temperature of 1300 K, The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions. (C) 2004 Elsevier B.V. All rights reserved.</p

    Bulk Fermi surface and momentum density in heavily doped La2−x_{2-x}Srx_xCuO4_4 using high resolution Compton scattering and positron annihilation spectroscopies

    Get PDF
    We have observed the bulk Fermi surface (FS) in an overdoped (xx=0.3) single crystal of La2−x_{2-x}Srx_xCuO4_4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure

    The effect of methylphenidate on three forms of response inhibition in boys with AD/HD

    Get PDF
    Item does not contain fulltextThe current study was aimed at (a) investigating the effect of three doses methylphenidate (MPH) and placebo on inhibition of a prepotent response, inhibition of an ongoing response, and interference control in Attention Deficit/Hyperactivity Disorder (AD/HD), and (b) studying dose-response relations for the three forms of response inhibition. To meet these aims, the following tasks were selected: two versions of the Stop Paradigm for inhibition of a prepotent response, a Circle Tracing Task and a recently developed Follow Task for inhibition of an ongoing response, and the Stroop Color-Word Test and an Eriksen Flanker Task for interference control. These tasks were administered to 23 boys with AD/HD during four treatment conditions: 5 mg MPH, 10 mg MPH, 20 mg MPH, and placebo. A pseudorandomized, multiple-blind, placebo-controlled, within-subject design was used. As hypothesized, inhibitory control in children with AD/HD improved under MPH compared to placebo. However, this effect was only significant for inhibition of a prepotent response and inhibition of an ongoing response (as measured by the Follow Task), but not for interference control. The relation between treatment condition and response was linear. However, this linear relation was due to improved inhibitory control under MPH compared to placebo, because no effects of MPH dose were observed for any of the response inhibition measures

    Annealing of SnO2 thin films by ultra-short laser pulses

    Get PDF
    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance [Proc. SPIE 8826, 88260I (2013)]. The figure of merit Ï• = T10 / Rsh was increased up to 59% after laser processing. In this paper we study and discuss the causes of this improvement at the atomic scale, which explain the observed decrease of conductivity as well as the observed changes in the refractive index n and extinction coefficient k. It was concluded that the absorbed laser energy affected the optoelectronic properties preferentially in the top 100-200 nm region of the films by several mechanisms, including the modification of the stoichiometry, a slight desorption of dopant atoms (F), adsorption of hydrogen atoms from the atmosphere and the introduction of laser-induced defects, which affect the strain of the film
    • …
    corecore