41 research outputs found

    Base excision repair of oxidative DNA damage and association with cancer and aging

    No full text
    Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA readily, generating a variety of DNA lesions, such as oxidized bases and strand breaks. If not properly removed, DNA damage can be potentially devastating to normal cell physiology, leading to mutagenesis and/or cell death, especially in the case of cytotoxic lesions that block the progression of DNA/RNA polymerases. Damage-induced mutagenesis has been linked to various malignancies. The major mechanism that cells use to repair oxidative damage lesions, such as 8-hydroxyguanine, formamidopyrimidines, and 5-hydroxyuracil, is base excision repair (BER). The BER pathway in the nucleus is well elucidated. More recently, BER was shown to also exist in the mitochondria. Here, we review the association of BER of oxidative DNA damage with aging, cancer and other diseases

    Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings

    Get PDF
    Revertant mosaicism due to true back mutations or second-site mutations has been identified in several inherited disorders. The occurrence of revertants is considered rare, and the underlying genetic mechanisms remain mostly unknown. Here we describe somatic mosaicism in two brothers affected with Wiskott-Aldrich syndrome (WAS). The original mutation causing disease in this family is a single base insertion (1305insG) in the WAS protein (WASP) gene, which results in frameshift and abrogates protein expression. Both patients, however, showed expression of WASP in a fraction of their T cells that were demonstrated to carry a second-site mutation causing the deletion of 19 nucleotides from nucleotide 1299 to 1316. This deletion abrogated the effects of the original mutation and restored the WASP reading frame. In vitro expression studies indicated that mutant protein encoded by the second-site mutation was expressed and functional, since it was able to bind to cellular partners and mediate T cell receptor/CD3 downregulation. These observations were consistent with evidence of in vivo selective advantage of WASP-expressing lymphocytes. Molecular analysis revealed that the sequence surrounding the deletion contained two 4-bp direct repeats and that a hairpin structure could be formed by five GC pairs within the deleted fragment. These findings strongly suggest that slipped mispairing was the cause of this second-site mutation and that selective accumulation of WASP-expressing T lymphocytes led to revertant mosaicism in these patients

    Age-related disease association of endogenous γ-H2AX foci in mononuclear cells derived from leukapheresis.

    Get PDF
    The phosphorylated form of histone H2AX (γ-H2AX) forms immunohistochemically detectable foci at DNA double strand breaks. In peripheral blood mononuclear cells (PBMCs) derived from leukapheresis from patients enrolled in the Baltimore Longitudinal Study of Aging, γ-H2AX foci increased in a linear fashion with regards to age, peaking at ~57 years. The relationship between the frequency of γ-H2AX foci and age-related pathologies was assessed. We found a statistically significant (p = 0.023) 50% increase in foci in PBMCs derived from patients with a known history of vitamin D deficiency. In addition, there were trends toward increased γ-H2AX foci in patients with cataracts (34% increase, p<0.10) and in sleep apnea patients (44%, p<0.10). Among patients ≥57 y/o, we found a significant (p = 0.037) 36% increase in the number of γ-H2AX foci/cell for patients with hypertension compared to non-hypertensive patients. Our results support a role for increased DNA damage in the morbidity of age-related diseases. γ -H2AX may be a biomarker for human morbidity in age-related diseases

    Toll-like Receptor 4 Pathway Polymorphisms Interact with Pollution to Influence Asthma Diagnosis and Severity

    No full text
    Asthma is a common chronic lung disease, the incidence and severity of which may be influenced by gene-environment interactions. Our objective was to examine associations between single nucleotide polymorphisms (SNPs) and combinations of SNPs in the toll-like receptor 4 (TLR4) pathway, residential distance to roadway as a proxy for traffic-related air pollution exposure, and asthma diagnosis and exacerbations. We obtained individual-level data on genotype, residential address, and asthma diagnosis and exacerbations from the Environmental Polymorphisms Registry. Subjects (n = 2,704) were divided into three groups (hyper-responders, hypo-responders, and neither) based on SNP combinations in genes along the TLR4 pathway. We geocoded subjects and calculated distance, classified as <250 m or ≥250 m, between residence and nearest major road. Relationships between genotype, distance to road, and odds of asthma diagnosis and exacerbations were examined using logistic regression. Odds of an asthma diagnosis among hyper-responders <250 m from a major road was 2.37(0.97, 6.01) compared to the reference group (p < 0.10). Hypo-responders ≥250 m from the nearest road had lower odds of activity limitations (0.46 [0.21, 0.95]) and sleeplessness (0.36 [0.12, 0.91]) compared to neither-responders (p < 0.05). Specific genotype combinations when combined with an individual's proximity to roadways, possibly due to traffic-related air pollution exposure, may affect the likelihood of asthma diagnosis and exacerbations

    Race-specific association of an IRGM risk allele with cytokine expression in human subjects

    No full text
    Abstract Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (−4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn’s disease and tuberculosis. Although patterns of linkage disequilibrium and minor allele frequency for this polymorphism differ dramatically between subjects of European and African descent, studies of rs13361189 have predominantly been conducted in Europeans and the mechanism of association is poorly understood. We recruited a cohort of 68 individuals (30 White, 34 African American, 4 other race) with varying rs13361189 genotypes and assessed a panel of immune response measures including whole blood cytokine induction following ex vivo stimulation with Toll-like Receptor ligands. Minor allele carriers were found to have increased serum immunoglobulin M, C-reactive protein, and circulating CD8+ T cells. No differences in whole blood cytokines were observed between minor allele carriers and non-carriers in the overall study population; however, minor allele status was associated with increased induction of a subset of cytokines among African American subjects, and decreased induction among White subjects. These findings underline the importance of broad racial inclusion in genetic studies of immunity

    The involvement of human RECQL4 in DNA double-strand break repair

    No full text
    Rothmund-Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown, however recent evidence suggest its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double strand break (DSB) repair. The results show that RECQL4-deficient fibroblasts are moderately sensitive to γ-irradiation and accumulate more γH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB’s in the RECQL4 deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy show that RECQL4 is recruited early to laser induced DSBs and remains for a shorter duration than WRN and BLM indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with γH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N-terminus domain between amino acids 363–492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser induced DSB and that it might play important roles in efficient repair of DSB’s
    corecore