42 research outputs found

    Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium <it>Bacillus subtilis</it>.</p> <p>Results</p> <p>We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase.</p> <p>Conclusion</p> <p>The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.</p

    Genomic Diversity within the Enterobacter cloacae Complex

    Get PDF
    Background: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. Methodolgy/Principal Findings: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogonous. Genetic markers were identified that could discriminate between the two clades and cluster 1. Conclusions/Significance: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here. © 2008 Paauw et al. Chemicals / CAS: Bacterial Proteins; DNA, Bacteria

    Molecular Assessment of Bacterial Vaginosis by Lactobacillus Abundance and Species Diversity

    Get PDF
    Background To date, women are most often diagnosed with bacterial vaginosis (BV) using microscopy based Nugent scoring or Amsel criteria. However, the accuracy is less than optimal. The aim of the present study was to confirm the identity of known BV-associated composition profiles and evaluate indicators for BV using three molecular methods. Methods Evaluation of indicators for BV was carried out by 16S rRNA amplicon sequencing of the V5-V7 region, a tailor-made 16S rRNA oligonucleotide-based microarray, and a PCR-based profiling technique termed IS-profiling, which is based on fragment variability of the 16S-23S rRNA intergenic spacer region. An inventory of vaginal bacterial species was obtained from 40 females attending a Dutch sexually transmitted infection outpatient clinic, of which 20 diagnosed with BV (Nugent score 7–10), and 20 BV negative (Nugent score 0–3). Results Analysis of the bacterial communities by 16S rRNA amplicon sequencing revealed two clusters in the BV negative women, dominated by either Lactobacillus iners or Lactobacillus crispatus and three distinct clusters in the BV positive women. In the former, there was a virtually complete, negative correlation between L. crispatus and L. iners. BV positive subjects showed cluster profiles that were relatively high in bacterial species diversity and dominated by anaerobic species, including Gardnerella vaginalis, and those belonging to the Families of Lachnospiraceae and Leptotrichiaceae. Accordingly, the Gini-Simpson index of species diversity, and the relative abundance Lactobacillus species appeared consistent indicators for BV. Under the conditions used, only the 16S rRNA amplicon sequencing method was suitable to assess species diversity, while all three molecular composition profiling methods were able to indicate Lactobacillus abundance in the vaginal microbiota. Conclusion An affordable and simple molecular test showing a depletion of the genus Lactobacillus in combination with an increased species diversity of vaginal microbiota could serve as an alternative and practical diagnostic method for the assessment of BV

    The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions

    Get PDF
    BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression

    Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune:Homologies with a gene not regulated by mating-type genes

    No full text
    The nucleotide (nt) sequences of the Sc3 and Sc4 genes of the filamentous fungus Schizophyllum commune, and the deduced amino acid (aa) sequences, were determined; moreover, the previously published sequence for the ScI gene [Dons et al., EMBO J. 3 (1984) 2101–2106] was corrected. All three independently isolated genes were found to have similar structures and nt sequences of their coding regions. At the aa level the homology is 43–62% (63–69% in the C-terminal parts of the proteins), the hydrophobic aa predominate and the hydrophobicity patterns are similar. All three proteins contain leader sequences and eight cysteines among about 110 aa, conserved at the same positions. Yet these genes are differentially regulated: Sc1 and Sc4 are only expressed at high levels in fruiting dikaryons, whereas Sc3 is highly expressed in both monokaryons and dikaryons, independent from fruiting

    Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance

    No full text
    Regulatory sequences of the glyceraldehyde-3-phosphate-dehydrogenase (GPD) gene from the homobasidiomycete Schizophyllum commune were fused to the coding sequence of the ble gene from Streptoalloteichus hindustanus, which codes for a phleomycin-binding protein. The resulting construct transformed S. commune to phleomycin resistance at a high frequency (up to 10(4) transformants/mu g DNA per 10(7) protoplasts) when regeneration was done in 0.5 M MgSO4. A similar construct with regulatory sequences from Aspergillus nidulans failed to give transformants, showing the importance of homologous regulatory sequences for the expression of genes in S. commune. The homologous GPD promoter could be deleted up to position -130 without any effect on the number of phleomycin-resistant transformants. This is the first effective stable transformation system in a homobasidiomycete employing antibiotic resistance

    Assignment of genes to pulse-field separated chromosomes of Schizophyllum commune

    No full text
    Chromosomal DNAs of the basidiomycete Schizophyllum commune were separated by Contour-Clamped Homogeneous Electric Field Electrophoresis (CHEF). The estimated sizes of the chromosomal DNAs ranged from 4.7 Megabase pairs (Mbp) to 1.6 Mbp, totalling 35.6 Mbp. Using sequences from 20 cloned genes we obtained hybridization signals to at least 8 out of 11 chromosomal DNAs. The mating-type genes A and B were mapped to the largest and the smallest chromosomal DNA band, respectively. Developmentally regulated genes which are under the control of the mating-type genes, were localized to five different chromosomal DNA bands
    corecore