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RESEARCH ARTICLE Open Access

Molecular assessment of bacterial vaginosis
by Lactobacillus abundance and species
diversity
Joke A. M. Dols1,2, Douwe Molenaar1, Jannie J. van der Helm3, Martien P. M. Caspers4, Alie de Kat Angelino-Bart4,
Frank H. J. Schuren4, Adrianus G. C. L. Speksnijder3,5, Hans V. Westerhoff1,6,7, Jan Hendrik Richardus2,
Mathilde E. Boon8,13, Gregor Reid9, Henry J. C. de Vries3,10,11 and Remco Kort1,4,12*

Abstract

Background: To date, women are most often diagnosed with bacterial vaginosis (BV) using microscopy based
Nugent scoring or Amsel criteria. However, the accuracy is less than optimal. The aim of the present study was
to confirm the identity of known BV-associated composition profiles and evaluate indicators for BV using three
molecular methods.

Methods: Evaluation of indicators for BV was carried out by 16S rRNA amplicon sequencing of the V5-V7 region,
a tailor-made 16S rRNA oligonucleotide-based microarray, and a PCR-based profiling technique termed IS-profiling,
which is based on fragment variability of the 16S-23S rRNA intergenic spacer region. An inventory of vaginal
bacterial species was obtained from 40 females attending a Dutch sexually transmitted infection outpatient clinic,
of which 20 diagnosed with BV (Nugent score 7–10), and 20 BV negative (Nugent score 0–3).

Results: Analysis of the bacterial communities by 16S rRNA amplicon sequencing revealed two clusters in the BV
negative women, dominated by either Lactobacillus iners or Lactobacillus crispatus and three distinct clusters in the
BV positive women. In the former, there was a virtually complete, negative correlation between L. crispatus
and L. iners. BV positive subjects showed cluster profiles that were relatively high in bacterial species diversity
and dominated by anaerobic species, including Gardnerella vaginalis, and those belonging to the Families of
Lachnospiraceae and Leptotrichiaceae. Accordingly, the Gini-Simpson index of species diversity, and the relative
abundance Lactobacillus species appeared consistent indicators for BV. Under the conditions used, only the
16S rRNA amplicon sequencing method was suitable to assess species diversity, while all three molecular
composition profiling methods were able to indicate Lactobacillus abundance in the vaginal microbiota.

Conclusion: An affordable and simple molecular test showing a depletion of the genus Lactobacillus in
combination with an increased species diversity of vaginal microbiota could serve as an alternative and
practical diagnostic method for the assessment of BV.

Keywords: Vaginal microbiota, Bacterial vaginosis, Nucleotide-based microarrays, 16S rRNA amplicon
sequencing, IS-profiling, Lactobacillus crispatus, Lactobacillus iners, Gardnerella vaginalis, Gini-Simpson index
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Background
Bacterial vaginosis (BV) is an aberrant state of the
vaginal microbiota, which is characterized by a deple-
tion of lactobacilli, an increased diversity of the bac-
terial population and an elevated pH. It is one the
most common vaginal syndromes in fertile, premeno-
pausal and pregnant women [1]. Vaginal malodor is a
common reason for women to consult a physician,
but BV can also occur without malodor or other symp-
toms and signs. The association of BV with pre-term birth
[2] and increased risk of sexually transmitted infections
(STIs) [3] makes it important that a correct diagnosis is
made. To date, treatment failure rates and recurrence
rates of BV remain high [4, 5].
Diagnoses based on the Amsel criteria [6], and micro-

scopic methods, such as the Nugent score [7], have their
limitations. A study we performed on samples from
South African women showed low specificity when
diagnosis of BV was based upon Gardnerella vaginalis
for the Nugent score. In 24 % of women who were
BV-negative, Gardnerella was present [8]. Another limita-
tions is inter-observer variation of microscopic slides.
Therefore, new molecular methodologies have been used
recently to study the vaginal microbiome. Next gener-
ation sequencing (NGS) technologies, such as Illumina
and 454-sequencing, can detect known and unknown
sequences without prior knowledge of the species in
the sample, facilitating in-depth analysis of microbial
community diversity [9]. As a result of the rapid devel-
opment of sequencing platforms, they have become
more affordable and accurate.
Microarray analysis [8, 10] requires pre-selection of

the organisms expected in the samples and is subject to
cross-hybridization between highly similar sequences
[11]. However, this method has been a useful tool to
detect BV-associated species, including Gardnerella
vaginalis, Atopobium vaginae, Dialister species, Mega-
sphaera species, Mobiluncus mulieris, Sneathia sangui-
negens, and Prevotella species [8, 10]. The method gave
comparable results to the organisms detected using
Illumina 16S rRNA amplicon sequencing on Tanzanian
BV subjects [12]. A third, relatively fast method, which
has not been applied previously to determine the compos-
ition of the vaginal microbiota, is based on the profiling of
the 16S–23S rRNA intergenic spacer (IS)-regions and has
been called IS-profiling [13].
As there is a strong need to develop a new gold stand-

ard for BV, it is important establish universal markers
based on molecular methods. Therefore, we first evalu-
ated the outcome of 16S rRNA amplicon sequencing of
the vaginal microbiota of women positive and negative
for BV on the basis of conventional Nugent scores in
order to confirm the composition of bacterial popula-
tions known to be associated with BV [14]. Second, we

selected molecular indicators for BV, including overall
abundance of the genus Lactobacillus and species diver-
sity, followed by evaluation of the indicators with three
molecular methods, high-throughput 16S rRNA ampli-
con sequencing, oligonucleotide-based microarrays, and
IS-profiling. The results of this study pave the way for
further development of a universal, PCR-based molecu-
lar diagnostic test for BV.

Methods
Subjects and sampling
For women with high-risk for STIs, routine screening is
offered at the STI outpatient clinic of the Public Health
Service Amsterdam (GGD, Amsterdam). The subjects
included in this study had either vaginal signs and/or
symptoms, were referred by a physician for STI testing
or tested because a sexual partner with a proven STI
had notified them. Samples were collected in June and
July 2012. A standard cervical examination was performed
and a cotton swab was used to remove abundant mucus
prior to the collection of a sample for Chlamydia tracho-
matis and Neisseria gonorrhoeae screening. The swab to
remove abundant mucus is not normally used for routine
testing and is discarded. However, for this study the cotton
swab was re-suspended in screw-cap coded tubes with
Amies transport media to which additional 15 % glycerol
and cysteïne solution had been added. Immediately, the
tubes were placed in liquid nitrogen and stored at −80 °C.
Samples did not disclose any subject names or other pa-
tient identification (date of birth, patient file number etc.),
and were sent on dry ice to the Netherlands Organisation
for Applied Scientific Research (TNO) for further analysis.
We studied the vaginal microbiota of 40 subjects, of which
20 BV-negative and 20 BV-positive, by selection of low
(0–3) and high (7–10) Nugent scores, respectively.

STI status
STI-screening consisted of HIV status (determined by
serology), syphilis (serology and/or nucleic acid amplifi-
cation test (NAAT), gonorrhea (culture and/or NAAT),
Chlamydia (urogenital, anogenital and throat region;
NAAT), herpes type 1 and 2 (PCR), Trichomonas (PCR),
hepatitis B (serology), Moluscum contagiosum (clinical
appearance), scabies (clinical appearance), ulcus (clinical
appearance), and pelvic inflammatory disease (PID; clin-
ical appearance).

Diagnosis of BV and vulvovaginal candidiasis
To determine if women met the criteria for BV or had
vulvovaginal candidiasis (VVC), microscopic scoring was
performed (potassium hydroxide (KOH) preparation and
Gram-stain). A vaginal smear was examined using the
Nugent scale [7], which includes the scores 0–3 as Nor-
mal; 4–6, Intermediate; and 7–10 for BV. The diagnosis

Dols et al. BMC Infectious Diseases  (2016) 16:180 Page 2 of 13



of BV was based on the Nugent Gram stain and the
presence of three Amsel criteria [6], characteristic vagi-
nal discharge, clue cells, and positive amine test. Meas-
urement of the pH was not part of the routine screening
procedure.

DNA isolation
The DNA isolations were performed as described in
detail by Zhao and others [15]. Briefly, samples were
mixed with 150 μl Agowa lysis buffer BL, 350 μl zirco-
nium beads (0.1 mm; suspended in milli Q-water), and
200 μl phenol and lysed in a BeadBeater (BioSpec Prod-
ucts, Bartlesville) for 2 min. The aqueous phase was
collected after spinning (5 min ~9.000 g) and DNA
was isolated via Agowa binding beads.

High-throughput sequencing and taxonomic classification
Sequence analysis was performed on a 454 GS-FLX-
Titanium Sequencer (Life Sciences (Roche), Branford, CT)
as described previously [16]. The amount of bacterial tem-
plate in the isolated DNA samples was determined with a
universal quantitative PCR for 16S rRNA gene [17]. After-
wards, a 16S rRNA gene amplicon library spanning vari-
able regions V5-V7 was generated [16]. FASTA-formatted
sequences and corresponding quality scores were extracted
from the data file generated by the GS-FLX Titanium se-
quencer using the GS Amplicon software package (Roche,
Branford, CT) and processed using modules from the
Mothur v. 1.22.2 software platform [18].
On average 2745 (minimum 96, maximum 5932, stand-

ard deviation 1304) sequence reads were generated for the
total of 40 amplified DNA fragments. Only one DNA
sample (TCMID116) resulted insufficient reads (less than
100) and was excluded from subsequent analyses. Se-
quences were de-noised using a pseudo-single linkage
algorithm with the goal of removing sequences that are
likely pyrosequencing errors using the “pre.cluster” com-
mand [19]. Potentially chimeric sequences were detected
and removed using the “chimera.uchime” command [20].
Fragments were aligned and a consensus was made for
identification purposes.
The family, genus and species determination is based

on the comparison of the specific probe sequence with
sequences derived from type strains in the RDP database
[21]. A sequence matched with the RDP database with a
homology score of 1 is named after the species, if pos-
sible. A homology score <1 is named after the genus or
family name. Names of certain species, genera or fam-
ilies which are presented more than once, result from a
difference on sequence level. The amplicon sequences,
numbers of reads for each sequence, and taxonomic
classifications have been presented in Additional file 1.

Statistical analysis of 16S rRNA amplicon sequences
The Pearson correlation coefficient of counts of all pairs
of unique sequences from the 40 samples (585 in total)
were calculated (leading to a 585 by 585 matrix of
correlation coefficients). Some sequences were highly
positively correlated, having correlation coefficients close
to or equal to 1, namely those that occurred in only 1
sample, and those that most likely originate from the
same species. The complexity of the data was reduced
by binning the counts of such highly correlated sequences
to one new sequence count variable. The total number of
new variables (unique sequences and sets of highly corre-
lated sequences) was 149. The lower boundary used for
binning counts of correlated sequences was a Pearson
correlation coefficient of 0.95. The resulting data were
clustered. Data were normalized by calculating relative
numbers per sample. The square root of these values was
taken. The Kruskal-Wallis test (a robust variant of one-
way ANOVA), was performed on the relation between
relative species abundance and the five main sample
clusters.
Using random forest analysis, correlations between rela-

tive abundances of bacterial sequences and the clinical
variables with a moderate variability were examined by
calculating a “Node Purity value” (IncNodePurity). The
mean increase in node purity is a measure of how each
variable, the sequence abundance of a specific species,
genus or family, contributes to the classification of the
sample by minimizing the residual sum of squares in
regression.

Nucleotide-based microarray analysis
Literature research and sequence analysis of a number
of vaginal microbiome samples were used for the design
of a tailor-made nucleotide-based microarray [8, 22].
Taxonomic selection of vaginal bacterial species for the
microarray was expanded based on denaturing gradient
gel electrophoresis (DGGE) analysis (data not shown).
For each bacterial species represented on the microarray,
one or more unique short oligonucleotide sequences
from within the 16 s rRNA gene were selected [8, 22].
The microarray data, based on consistent signal to back-
ground ratios of fluorescence intensity after hybridization,
have been indicated for each selected oligonucleotide
probe in Additional file 2.

IS-profiling
A PCR-based profiling technique for high-throughput
analysis of the microbiome was performed as described
by Budding and others [23]. The amplification of the
IS-regions was performed with the IS-pro assay (IS-
Diagnostics, Amsterdam, the Netherlands). The IS-pro
method involves bacterial species differentiation by the
length of the 16S-23S rRNA intergenic spacer region
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with taxonomic classification by phylum-specific fluor-
escent labeling of PCR primers. The IS-pro procedure
includes PCR’s for the phyla Firmicutes, Actinobacteria,
Fusobacteria, and Verrucomicrobia (FAFV), Bacteroi-
detes and Proteobacteria [23, 24]. The IS-profiling was
performed on vaginal microbiota samples selected from
each of five clusters identified in this study. A total of
15 samples were analyzed by IS-profiling, including
representatives of BV-negative cluster I (TCMID 101,
103, 113), and cluster II (TCMID 102, 111, 112), as well
as BV-positive cluster III (TCMID 126, 135), cluster IV
(TCMID 134, 136), and cluster V (TCMID 117, 118,
120). As a control, IS-pro analyses was performed on a
L. crispatus strain isolated from TCMID 103 (BV-negative,
Nugent score 0), and on a L. iners strain, isolated from
TCMID 134 (BV-positive, Nugent score 10).

Comparative analysis of molecular markers for bacterial
vaginosis
Species diversity based on next generation sequencing,
microarray and IS-profiling has been calculated by the
Gini-Simpson index [25]. The Gini-Simpson index mea-
sures the degree a sequence abundance contributes to
the classification of the sample. Each microarray probe
was scored by counting only positive detection, i.e.
having a value above the detection threshold (≥5 signal-
to-background ratio). Relative abundance is calculated
by selecting all representing probes and calculating the
number of percent of a species of a particular kind
relative to the total number of species per sample. The
read-out of the IS-profiling was analyzed by the mean
log2 intensity in Relative Fluorescence Units (RFU) per
phylum for BV positive clusters and BV negative clus-
ters. Analysis was conducted using the software environ-
ment for statistical computing and graphics R version
3.2.2 [26] and the MeV microarray software suite version
4.9 [27].

Results
Bacterial vaginosis and STI-status
A total of 40 cervical swab samples were collected from
women older than 18 years of age. The bacterial popula-
tions in these samples were analyzed from the first twenty
consecutive patients with a BV-positive score (Nugent
scale 7–10), and the first 20 consecutive patients with a
BV-negative score (Nugent scale 0–3). The latterincluded
18 (45 %) of European or Asian origin and 2 (5 %) of a
Hispanic background, with the remainder Caucasian. The
BV-positive women comprised 9 (23 %) of European or
Asian origin versus 11 (28 %) of a Hispanic background,
(Additional file 3). Characteristics of the women and STI-
status are shown in Table 1. According to the Amsel
criteria, 21 women were positive for BV, with only one
discrepancy between the Amsel and Nugent method. Two

subjects (5 %) tested positive for VVC. An STI was de-
tected in 10 women (25 %), with C. trachomatis being the
most prevalent (18 %). None of the women had HIV,
Syphilis, Gonorrhoea, Hepatitis B, Moluscum contagio-
sum, Scabies, genito-ulcerative disease, or PID.

Identification of five distinct vaginal microbiota types
Analysis of the 16S rRNA amplicon sequencing data
(Fig. 1) revealed five distinct types or clusters with two
subgroups perhaps within the fifth type. Three clusters
were identified in the BV-positive subjects and two in the
BV-negative samples (Nugent score ≤ 3). Sample TCMID
121, positive for BV according to the Nugent criteria, was
classified as cluster I. Apart from a high abundance of
L. iners, there was a high abundance of Prevotella, G.
vaginalis, and Sneathia sanguinegens in this sample.
Results of the Kruskal-Wallis test, that determined

which species distribution differentiated most significantly
between clusters, are shown in Table 2. Clearly, in BV-
negative samples, a relatively low species diversity is
observed, with the microbiome dominated by either L. cris-
patus or L. iners. Cluster I was characterized by L. iners at
81 %, while cluster II was dominated by L. crispatus at 79 %
with L. iners present at 17 %. Cluster III comprised a group

Table 1 Patient characteristics and STI status of 20 women
with BV and 20 women without BV, as diagnosed by the STI
outpatient clinic Public Health Service Amsterdam, in June and
July 2012

BV-negative women
n = 20
(% of BV-negative
women)

BV-positive women
n = 20
(% of BV-positive
women)

Inclusion criteria

Referred by physician or
notified by sexual partner

4 (20 %) 4 (20 %)

Vaginal complaints 16 (80 %) 20 (100 %)

Patient characteristics

Median age (years) (IQR) 23 (22–25) 22.5 (21–27)

Any STI 3 (15 %) 7 (35 %)

Chlamydia 2 (10 %) 5 (25 %)

Herpes Type 1 1 (5 %) 0

Type 2 0 0

Condyloma 1 (5 %) 1 (5 %)

Trichomoniasis 0 1 (5 %)

HIV, Syphilis, Gonorrhoea,
Hepatitis B, Moluscum
Contagiosum, Scabies,
Ulcus, PID

All negative

The subjects included in this study had either vaginal signs and/or symptoms,
were referred by a physician for STI testing or tested because a sexual partner
with a proven STI had notified them. The number of women based on the
inclusion criteria and STI status is shown (n). The percentage (%) of women
with STIs is shown
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Fig. 1 Cluster analysis of next generation sequencing data of women without and with various extents of BV. At the top the first color bar from the left shows the numbering and color-coding of
the grouping that the clustering of the women (the dimension of the abscissa) suggests. The second color bar refers to the low (blue) to high (red) Nugent score of the women. On the abscissa the
family, genus, species identities are shown clustered on the basis of this next generation sequencing data set. An asterisk indicates the species that are considered to be a result of isolation of background
DNA from bacterial species of a non-vaginal origin, as based on systematic comparisons with previously reported compositions of the vaginal microbiome [22, 30]. Two asterisks indicate multiple hits
with identical similarity in RDP database: the species Streptococcus salivarius, which cannot be discriminated from Enterococcus faecium and Sneathia sanguinegens, which cannot be discriminated from
Leptotrichia amnionii
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Fig. 2 Correlation between Lactobacillus crispatus and Lactobacillus iners based on 16S rRNA amplicon sequencing. The abscissa and ordinate
show, respectively, the fractions of L. iners and L. crispatus sequences relative to the total number of sequences. The color bar shows the color
code: low (blue) to high (red) Nugent score of the women

Table 2 The relation between species abundance and the five main sample clusters using the Kruskal Wallis test

Species K-W rank sum Cl. I (%) Cl. II (%) Cl. III (%) Cl. IV (%) Cl. V (%)

BV neg. BV neg. BV pos. BV pos. BV pos.

Lactobacillus crispatus 33 0 79 0.4 0 0

Sneathia sanguinegensa 30 0 0 0.2 0.8 22

Coriobacteriaceae 28 0 0 1.3 0.4 2.0

Dialister micraerophilus 26 0.1 0 0.5 0.2 0.4

Atopobium vaginae 25 0 0 1.7 1.0 1.8

Veillonellaceae 23 1.3 0 11 5.8 12

Parvimonas sp 22 2 0 2.2 0.9 1.7

Saccharofermentans 22 0 0 6.6 0.8 2.1

Leptotrichia amnioniia 21 2.6 0 12 4.9 6.6

Gardnerella vaginalis 21 1.3 0.1 43 4.1 15

Lachnospiraceae 21 0.1 0 0.4 52 0.1

Prevotella amnii 18 0 0 0 6.5 13

Campylobacter sp 16 0 0 0 1.5 0

Lactobaccillus iners 16 81 17 5.4 5.5 5.5

Peptoniphilus lacrimalis 15 0 0 0.2 0.1 0

Lactobacillus jensenii 15 0.5 0.7 0.3 0 0

Dialister sp 15 0 0 1.1 0.1 0.7

Per cluster the abundance of the species percentage is shown (p ≤ 0.02). The p-value is defined as the probability of observing a K-W rank sum of the size reported
or more extreme when the null hypothesis is true (null hypothesis is that the distribution equal over all clusters for the selected species or bacterial Family). The
K-W rank sum expresses the deviation from the distribution under the null hypothesis. For each cluster the most dominant species was printed in boldface. Values
expressed as percentage and were rounded to two significant digits
aSneathia sanguinegens could not be unambiguously discriminated from Leptotrichia amnionii
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of mainly BV-positive women (5 out of 6), with the vaginal
microbiome dominated by G. vaginalis (43 %) and Leptotri-
chia amnionii (12 %). Sample TCMID 109 scored negative
for BV according to the Nugent criteria (score 1), however
according to the Amsel score this sample was BV-positive
(vaginal discharge clue cells, and positive amine test; in
combination with pseudohyphae). The analysis of 16S
rRNA amplicon sequences indicated a high abundance of
G. vaginalis in this sample, thereby classifying it as cluster
III. Sequences of the Family Lachnospiraceae were the most
abundant in cluster IV (52 %). Cluster V could be identified
as the most diverse cluster, including bacterial species at
similar abundance, including Sn. sanguinegens (22 %) and
G. vaginalis (15 %).

Characteristics of vaginal microbiota compositions
The correlation between L. crispatus and L. iners abun-
dance across the women is indicated in Fig. 2. In the BV-

negative subjects, there was a negative correlation of almost
one between L. crispatus and L. iners. These women had a
high abundance of L. crispatus or L. iners. All women with
BV, and only 37 % of the women without BV were deficient
of L. crispatus. The power of various 16S rRNA amplicon
sequence based identifiers for the prediction of the Nugent-
score is shown using the Node Purity value (Fig. 3). The
strongest correlation between sequence abundance and
Nugent score was found with sequences belonging to non-
lactic acid bacteria, including the Family of the Coriobacter-
iaceae (including A. vaginae), Leptotrichiaceae (Sn. sangui-
negens or L. amnionii), and of Veillonellaceae (including
Dialister micraerophilus). The presence of sequences be-
longing to the Family of the Coriobacteriaceae was the
most discriminating, comparing the two BV negative clus-
ters I and II with the three BV positive clusters III, IV and
V (see Fig. 3). There was no correlation between the se-
quence abundances and other clinical variables, including

Anaerococcus tetradius

Mycoplasma hominis cluster

Gardnerella vaginalis

Gardnerella vaginalis

Genus Halomonas*

Lactobacillus iners

Genus Dialister

Genus Shewanella*

Family Lachnospiraceae cluster

Genus Aerococcus

Lactobacillus jensenii

Lactobacillus crispatus

Sneathia sanguinegens**

Genus Parvimonas

Dialister micraerophilus

Genus Saccharofermentans cluster

Atopobium vaginae

Veillonellaceae bacterium

Sneathia sanguinegens**

Family Coriobacteriaceae cluster

0 20 40 60 80 100 120

Variable importance for
prediction of nugent score

IncNodePurity

Fig. 3 Predictive power of various microbial species for BV. The abscissa shows the mean “increase in node purity” for the prediction of the Nugent
score (a measure of how the sequence abundance of the specific species or family denoted on the ordinate contributes to the classification of the
sample). The ordinate presents the family, genus, species determination on the basis of 16S rRNA amplicon sequencing. Two different
strains of G. vaginalis are presented
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STI status, VVC, age, or symptoms and signs reported by
patients. A larger sample size may be needed to detect cor-
relations between these variables and vaginal microbiota
composition.
The bacterial species diversity of the various clus-

ters is based on the 16S rRNA amplicon sequences
and expressed as the Gini-Simpson index (Fig. 4). In
the clusters of BV positive women (cluster III, cluster
IV and cluster V) the microbiome showed a higher
diversity of species than in the clusters of BV nega-
tive women based on the Gini-Simpson index (cluster
I and cluster II), although there were a few individual
exceptions.

Microarray-based bacterial vaginosis profiles
The cluster analysis of microarray results is shown in
Fig. 5. The abscissa orders the women on the basis of
their cluster defined by the previous cluster analysis of
16S rRNA amplicon sequencing. Firmicutes, mainly Lac-
tobacillaceae, were more present in BV negative than in
BV positive clusters. Bacteroidetes abounded in the BV
positive clusters. Cluster II, again (Table 2) identified by
the presence of L. crispatus, and cluster IV, again identi-
fied by the presence of Family Lachnospiraceae, could
also be distinguished. A separate cluster III marked by
G. vaginalis or Sn. sanguinegens (Table 2) could not be
distinguished in the microarray profiles.

Bacterial vaginosis profiles by IS-profiling
In Fig. 6, the mean log2 intensity in RFU is shown per
phylum for BV positive clusters and BV negative clusters.
Firmicutes, including the Family of Lachnospiraceae, and
Lactobacillaceae, was the most diverse in the BV positive
clusters. An increased diversity of species in BV positive
women as compared to BV negative women was found by
the use of IS-profiling. Cluster IV included the samples
with the highest diversity index.

Lactobacillus abundance and species diversity
We evaluated four molecular indicators to assess BV
(Table 3). First, the diversity of the bacterial population,
expressed as a number between 0 and 1 by the Gini-
Simpson index. Second, the relative abundance of the genus
Lactobacillus, and third, the relative abundance of L. crispa-
tus (both expressed as percentage of the total bacterial
population). As a fourth additional Lactobacillus marker,
we included the relative abundance of L. iners, although
this bacterium is known to be associated with the BV-
negative as well as the BV-positive vaginal microbiota [28].
Diversity of the bacterial population between BV positive
and negative samples was well-discriminated by 16S rRNA
amplicon sequencing. The average Gini-Simpson diversity
index for the BV-positive samples was 0.70 ± 0.15, while the
average of BV-negative samples was 0.06 ± 0.04. Although
the microarray and to a lesser extent the IS-pro method
were not able to discriminate BV on basis of bacterial
diversity, we argue that this result does effect the fidelity of
this marker, as these methods easily overestimate species
diversity from the inclusion of background signals. The
dominance of the genus Lactobacillus could be assessed by
the 16S rRNA sequencing method (0.98 ± .15 vs 0.04 ± 0.04
of BV-negative vs BV-positive), but also by both other
molecular methods. The presence of L. crispatus can be
considered the best indicator for the absence of BV, as this
bacterium was completely absent (0.00 %) in all samples,
confirmed by all three molecular methods. However, this
absence did not provide any indication, as the BV-negative
cluster I vaginal microbiota profiles do not contain any
L. crispatus. Our observations confirm that although
L. iners is in many studies found to be associated with BV,
its dominance is also a good indicator for BV-negative
samples. The bacterium L. iners occured in BV-associated
samples only for relative abundances between 0 % and in
an exceptional case 32 % of the bacterial population,
depending on the detection method used.

Discussion
Key findings of this paper
This work confirmed the presence of two clusters of
bacterial populations BV negative women, dominated by
either Lactobacillus iners or Lactobacillus crispatus and
three distinct clusters in the BV positive women. The

Fig. 4 A boxplot relating species diversity based on 16S rRNA
amplicon sequencing to BV. Individuals were first classified in
clusters shown in sequence of increasing BV diagnosis on the
abscissa. The dots give the Gini-Simpson index for individuals in
different clusters. The boxes represent the distributions of the
Gini-Simpson index and show its median and interquartile range
(IQR) for each cluster. Whiskers extend to the furthest data point
that is within 1.5 times the IQR
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Fig. 5 Organism clustering on the basis of microarray analysis, plotted versus clustering on the basis of the 16S rRNA amplicon sequencing. In
the middle, the uppermost color bar represents the color coding of the fluorescence intensity (arbitrary units, numbers 0.0–50.0) of DNA hybridizations,
the middle color bar shows the cluster the individual was classified into and the lower color bar shows the low (blue) to high (red) Nugent score of the
individuals. On the right, the upper color bar shows the clustering color code and the lower color bar the Nugent score color code
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Fig. 6 IS-profiling of phyla found in BV negative and BV positive women in relation to cluster group based on 16S rRNA amplicon sequencing
data. The abscissa quantifies the cluster of each of 13 samples and 2 cultured strains. In dark green the Lactobacillus-dominated samples classified
as BV negative are shown, in light green two strains of L. crispatus and L. iners, and in red the BV positive samples. On the ordinate the phyla are
shown, Bacteroidetes (pink), FAFV (blue), and Proteobacteria (yellow). The numbers shown in the ordinate represent the IS-profiling length in the
nucleotides. The mean log2 intensity in Relative Fluorescence Units (RFU) is shown by the color intensity as defined by the color bars on the left.
FAFV: Firmicutes/Actinobacteria/Fusobacteria/Verrucomicrobia

Table 3 Comparative analysis of indicators for bacterial vaginosis assessed with the three molecular methods 16S rRNA amplicon
sequencing, microarray, and IS profiling

Cl. TCMID BV Nugent score Gini Simpson index Relative abundance genus Lactobacillus Relative abundance
L. crispatus

Relative abundance
L. iners

Seq Micr IS-pro Seq Micr IS-pro Seq Micr IS-pro Seq Micr IS-pro

I 101 BV- 0 0.03 0.73 0.69 0.98 0.89 0.98 0.00 0.00 0.02 0.98 0.46 0.95

I 103 BV- 0 0.12 0.82 0.34 0.99 0.91 0.92 0.00 0.00 0.00 0.93 0.53 0.92

I 113 BV- 2 0.09 0.87 0.80 0.97 0.49 0.95 0.00 0.00 0.01 0.95 0.22 0.69

II 111 BV- 2 0.05 0.61 0.60 0.97 0.73 0.92 0.97 0.53 0.92 0.00 0.00 0.00

II 102 BV- 0 0.05 0.67 0.67 0.99 0.98 0.97 0.97 0.69 0.89 0.01 0.00 0.06

II 112 BV- 2 0.01 0.74 0.67 1.00 1.00 0.97 0.99 0.65 0.94 0.00 0.00 0.00

III 126 BV+ 9 0.60 0.78 0.81 0.05 0.00 0.32 0.00 0.00 0.00 0.04 0.00 0.32

III 135 BV+ 10 0.77 0.89 0.86 0.05 0.01 0.18 0.00 0.00 0.00 0.05 0.01 0.18

IV 134 BV+ 10 0.44 0.91 0.97 0.01 0.00 0.10 0.00 0.00 0.00 0.01 0.00 0.10

IV 136 BV+ 10 0.68 0.85 0.87 0.13 0.11 0.26 0.00 0.00 0.00 0.13 0.03 0.26

V 117 BV+ 8 0.82 0.82 0.86 0.01 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.04

V 118 BV+ 8 0.86 0.87 0.85 0.02 0.00 0.16 0.00 0.00 0.00 0.02 0.00 0.16

V 120 BV+ 8 0.76 0.87 0.83 0.05 0.00 0.13 0.00 0.00 0.00 0.05 0.00 0.13

The indicators, Gini-Simpson index, abundance of the genus Lactobacillus, and L. crispatus, and L. iners have been shown for representatives of each of the
5 clusters (a total of 13 samples). The Gini-Simpson index represents the species diversity (0 = low diversity, 1 = high diversity), the abundance of the genus
Lactobacillus, and L. crispatus, and L. iners is shown as a relative abundance between 0 and 1
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cluster profiles in BV positive subjects were relatively
high in bacterial species diversity and dominated by a
variety of anaerobic species. The Gini-Simpson index of
species diversity, and the relative abundance of Lactoba-
cillus species appeared consistent indicators for BV. The
16S rRNA amplicon sequencing method was most suit-
able to assess species diversity, while all three molecular
composition profiling methods used in this study were
able to indicate Lactobacillus abundance in the vaginal
microbiota. An affordable and simple molecular test
showing a depletion of the genus Lactobacillus in com-
bination with an increased species diversity of vaginal
microbiota could serve as an alternative diagnostic
method for the assessment of BV.

Universal markers in the BV-associated microbiota
The 16S rRNA amplicon sequence analysis of the vaginal
microbiome led to the identification of three clusters of
microbiome patterns in Dutch women with BV, and two
clusters in women without BV. The latter two clusters
resemble two of the major community state types (CSTs),
found in US subjects who did not have symptomatic BV,
which were dominated by L. crispatus and L. iners [28].
However, the present study did not find CSTs of L. gasseri,
or L. jensenii, as observed in other studies [29]. All women
with BV were deficient in L. crispatus. However, L. iners
was detected in various ratios among women with BV, al-
beit with lower abundance than BV-negative subjects, as
previously confirmed [12].
In women without BV, the vaginal microbiome was

dominated by L. iners or L. crispatus or a mixture of
both. L. crispatus has been regarded as an important
marker for health, yet it is not present in all women
deemed healthy [30] and in our study particularly not in
the women with cluster 1 microbiome (Table 2). It
appears that L. crispatus is not solely responsible for
maintaining a BV negative state, and it is easily displaced
when BV occurs [31]. In BV negative subjects, there was
a negative correlation of almost one between L. crispatus
and L. iners. Species of the vaginal microbiome associ-
ated with BV in this study include the Family of Corio-
bacteriaceae (including A. vaginae), Leptotrichiaceae
(Sn. sanguinegens or L. amnionii) and of Veillonellaceae
(including D. micraerophilus). The phyla Bacteroidetes,
Actinobacteria, and Fusobacteria, were dominant in BV
positive samples. As observed before, unlike the gut
[32], the aberrant or disturbed vaginal microbiome is
highly diverse, with no systematic occurrence of a sin-
gle bacterial species shared in the BV-associated micro-
biota, also evident in our study. Therefore, an overall
increased diversity of bacterial species in combination
with a depletion of the genus Lactobacillus appear good
universal molecular markers for diagnosis of BV, in

comparison to Nugent scoring, Amsel test or other
commercial methods.

Limitations of this study
With regard to the amplicon sequencing method, the fam-
ily, genus and species assignment is based on the compari-
son of specific V5-V7 16S rRNA sequences with those
derived from the type strains present in the RDP database.
In some cases the obtained V5-V7 16S rRNA amplicon
sequence could not be unambiguously assigned to one
species (e.g. the sequence of Sneathia sanguinegens could
not be discriminated from that of Leptotrichia amnionii).
Although the amplicon sequencing methodology appears
most accurate in the read-out of species diversity com-
pared to the other methodologies used in this study, also
with this method under- or overrepresentation of certain
species can occur.
To study the influence of ethnicity on the vaginal

microbiota a larger sample size needs to be assessed. Be-
cause of financial restrictions, the sample size could not
be expanded in this study. However, the findings on
bacterial diversity agree with a recent study of samples
from Rwandan women [33]. In the present study only
BV positive and BV negative women were selected: none
with an intermediate Nugent score. A future study could
be undertaken to determine if intermediate scores with
high diversity actually fall under a BV diagnosis. All the
subjects were at high risk of STIs and for that reason
attended the clinic for regular check-up. Equating high
risk with exposure to STI pathogens is not easy, so the
ability to study samples from these subjects on multiple
days would be useful to identify if and when exposure
occurs and if having BV influences the outcome. A lar-
ger sample size is needed to detect correlations between
clinical variables, including STI status, VVC, age, or
symptoms and signs reported by patients and vaginal
microbiota composition.

Implications for the molecular diagnosis of bacterial
vaginosis
For the benefit of clinicians, a simple and inexpensive
method is needed to diagnose BV. This could be based
on molecular markers identifying women with a vaginal
microbiome less resilient to (or at risk for) negative
health consequences. A multiplex PCR, which included
L. crispatus, L. iners, and G. vaginalis, A. vaginae, and
Megasphaera,has been developed for the diagnosis of
BV by Kusters and others [34]. Another has used a
G. vaginalis, A. vaginae, Lactobacillus genus—qPCR
tool and found a sensitivity of 93.4 % and specificity
of 83.6 % to diagnose BV [35]. Based on these studies
and our data of Dutch women, the bacterial diversity
and overall abundance of the genus Lactobacillus could be
considered sufficient as molecular markers to determine
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BV in the majority of subjects. It remains to be seen if the
assessment of BV-clusters with a wide variety of species is
significant for the clinical practice, given that there is no
consensus about their number and composition.
Another major issue in patient management is that

currently no treatments have been developed specifically
against any BV-cluster. Formation of an epithelial poly-
microbial biofilm with G. vaginalis appears to play an
important role in BV [36]. Ideally, treatment should be
more targeted to destabilize BV biofilms and allow
restoration of the subject’s indigenous microbiome
associated with health. The failure of industry to de-
velop new treatments leaves patients with sub-optimal
care, and with no new therapeutic agents on the hori-
zon, making the best use of current agents, perhaps
in combination with (personalized) probiotics, could
provide better management of BV for women around
the world [37, 38].

Conclusion
Molecular assessment of species diversity and Lactoba-
cillus abundance are useful molecular markers to assess
a woman’s BV-status. While diversity can only be accur-
ately assessed by 16S rRNA amplicon sequencing, abun-
dance of the genus Lactobacillus can be assessed by all
three molecular methods used in this study.
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