178 research outputs found

    Electronic structure of single-crystalline Mgx_xAl1−x_{1-x}B2_2 probed by x-ray diffraction multipole refinements and polarization-dependent x-ray absorption spectroscopy

    Full text link
    X-ray diffraction multipole refinements of single-crystalline Mgx_xAl1−x_{1-x}B2_2 and polarization-dependent near-edge x-ray absorption fine structure at the B 1ss edge reveal a strongly anisotropic electronic structure. Comparing the data for superconducting compounds (x=0.8x= 0.8, 1.0) with those for the non-superconductor (x=0x=0) gives direct evidence for a rearrangement of the hybridizations of the boron pzp_z bonds and underline the importance of holes in the σ\sigma-bonded covalent sp2sp^2 states for the superconducting properties of the diborides. The data indicate that Mg is approximately divalent in MgB2_2 and suggest predominantly ionic bonds between the Mg ions and the two-dimensional B rings. For AlB2_2 (x=0x=0), on the other hand, about 1.5 electrons per Al atom are transferred to the B sheets while the residual 1.5 electrons remain at the Al site which suggests significant covalent bonding between the Al ions and the B sheets. This finding together with the static electron deformation density points to almost equivalent electron counts on B sheets of MgB2_2 and AlB2_2\@, yet with a completely different electron/hole distribution between the σ\sigma and π\pi bonds

    Suppression of spin-state transition in epitaxially strained LaCoO_{3}

    Full text link
    Epitaxial thin films of LaCoO_{3} (E-LCO) exhibit ferromagnetic order with a transition temperature T_c = 85 K, while polycrystalline thin LaCoO_{3} films (P-LCO) remain paramagnetic. The temperature-dependent spin-state structure for both E-LCO and P-LCO was studied by x-ray absorption spectroscopy at the Co L_{2,3} and O K edges. Considerable spectral redistributions over temperature are observed for P-LCO. The spectra for E-LCO, on the other hand, do not show any significant changes for temperatures between 30 K and 450 K at both edges, indicating that the spin state remains constant and that the epitaxial strain inhibits any population of the low-spin (S = 0) state with decreasing temperature. This observation identifies an important prerequisite for ferromagnetism in E-LCO thin films.Comment: 5 pages, 5 figures, submitted to Physical Review

    YBa2_2Cu3_3O7_7/La0.7_{0.7}Ca0.3_{0.3}MnO3_3 bilayers: Interface coupling and electric transport properties

    Full text link
    Heteroepitaxially grown bilayers of ferromagnetic La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO) on top of superconducting YBa2_2Cu3_3O7_7 (YBCO) thin films were investigated by focusing on electric transport properties as well as on magnetism and orbital occupation at the interface. Transport measurements on YBCO single layers and on YBCO/LCMO bilayers, with different YBCO thickness dYd_Y and constant LCMO thickness dL=50d_L=50\,nm, show a significant reduction of the superconducting transition temperature TcT_c only for dY<10d_Y<10\,nm,with only a slightly stronger TcT_c suppression in the bilayers, as compared to the single layers. X-ray magnetic circular dichroism (XMCD) measurements confirm recently published data of an induced magnetic moment on the interfacial Cu by the ferromagnetically ordered Mn ions, with antiparallel alignment between Cu and Mn moments. However, we observe a significantely larger Cu moment than previously reported, indicating stronger coupling between Cu and Mn at the interface. This in turn could result in an interface with lower transparency, and hence smaller spin diffusion length, that would explain our electric transport data, i.e.smaller TcT_c suppression. Moreover, linear dichroism measurements did not show any evidence for orbital reconstruction at the interface, indicating that a large change in orbital occupancies through hybridization is not necessary to induce a measurable ferromagnetic moment on the Cu atoms.Comment: 8 Figure

    Extremely Small Energy Gap in the Quasi-One-Dimensional Conducting Chain Compound SrNbO3.41_{3.41}

    Get PDF
    Resistivity, optical, and angle-resolved photoemission experiments reveal unusual one-dimensional electronic properties of highly anisotropic SrNbO3.41_{3.41}. Along the conducting chain direction we find an extremely small energy gap of only a few meV at the Fermi level. A discussion in terms of typical 1D instabilities (Peierls, Mott-Hubbard) shows that neither seems to provide a satisfactory explanation for the unique properties of SrNbO3.41_{3.41}.Comment: 4 pages, 3 figure

    Hole distribution for (Sr,Ca,Y,La)_14 Cu_24 O_41 ladder compounds studied by x-ray absorption spectroscopy

    Get PDF
    The unoccupied electronic structure for the Sr_14Cu_24O_41 family of two-leg ladder compounds was investigated for different partial substitutions of Sr^2+ by Ca^2+, leaving the nominal hole count constant, and by Y^3+ or La^3+, reducing the nominal hole count from its full value of 6 per formula unit. Using polarization-dependent x-ray absorption spectroscopy on single crystals, hole states on both the chain and ladder sites could be studied. While for intermediate hole counts all holes reside on O sites of the chains, a partial hole occupation on the ladder sites in orbitals oriented along the legs is observed for the fully doped compound Sr_14Cu_24O_41. On substitution of Ca for Sr orbitals within the ladder planes but perpendicular to the legs receive some hole occupation as well.Comment: 10 pages RevTeX style with 7 embedded figures + 1 table; accepted by Phys. Rev.
    • …
    corecore