6 research outputs found

    KIC InnoEnergy Project Neptune: development of a floating LiDAR buoy for wind, wave and current measurements

    Get PDF
    The KIC-InnoEnergy project “NEPTUNE” develops a floating Lidar buoy and a hindcast- and forecast model for wind- wave- and current measurements of offshore wind farms. In this paper just the lidar buoy is presented and discussed: Main challenges, the design ideas and the steps to develop, test and prototype this product, which – according to the KIC-InnoEnergy project idea – should be commercialized after the project end, foreseen for the end of 2014. KIC-InnoEnergy is funded from the European Institute of Technology, EIT.Peer ReviewedPostprint (published version

    Meteo-oceanographic simulations and observations to assess the potential of offshore wind farm in a NW Mediterranean shelf

    No full text
    Renewable marine energy is important in squeezed Mediterranean coastal zones. Wind turbines deployed over the narrow Catalan continental shelf require accurate wind/wave/current fields for a reliable design, operation and maintenance. This paper presents the large (comparative to other open sea areas) errors in meteo-oceanographic predictions for semi enclosed domains such as the coastal sea off the Ebro Delta coast. The emphasis is on the sequence of high resolution coupled and nested models and the role of in situ collocated measurements for calibration and validation.Postprint (published version

    KIC InnoEnergy Project Neptune: development of a floating LiDAR buoy for wind, wave and current measurements

    No full text
    The KIC-InnoEnergy project “NEPTUNE” develops a floating Lidar buoy and a hindcast- and forecast model for wind- wave- and current measurements of offshore wind farms. In this paper just the lidar buoy is presented and discussed: Main challenges, the design ideas and the steps to develop, test and prototype this product, which – according to the KIC-InnoEnergy project idea – should be commercialized after the project end, foreseen for the end of 2014. KIC-InnoEnergy is funded from the European Institute of Technology, EIT.Peer Reviewe

    Meteo-oceanographic simulations and observations to assess the potential of offshore wind farm in a NW Mediterranean shelf

    No full text
    Renewable marine energy is important in squeezed Mediterranean coastal zones. Wind turbines deployed over the narrow Catalan continental shelf require accurate wind/wave/current fields for a reliable design, operation and maintenance. This paper presents the large (comparative to other open sea areas) errors in meteo-oceanographic predictions for semi enclosed domains such as the coastal sea off the Ebro Delta coast. The emphasis is on the sequence of high resolution coupled and nested models and the role of in situ collocated measurements for calibration and validation
    corecore