11,883 research outputs found
Electron-spin beat susceptibility of excitons in semiconductor quantum wells
Recent time-resolved differential transmission and Faraday rotation
measurements of long-lived electron spin coherence in quantum wells displayed
intriguing parametric dependencies. For their understanding we formulate a
microscopic theory of the optical response of a gas of optically incoherent
excitons whose constituent electrons retain spin coherence, under a weak
magnetic field applied in the quantum well's plane. We define a spin beat
susceptibility and evaluate it in linear order of the exciton density. Our
results explain the many-body physics underlying the basic features observed in
the experimental measurements
Indeterminate-length quantum coding
The quantum analogues of classical variable-length codes are
indeterminate-length quantum codes, in which codewords may exist in
superpositions of different lengths. This paper explores some of their
properties. The length observable for such codes is governed by a quantum
version of the Kraft-McMillan inequality. Indeterminate-length quantum codes
also provide an alternate approach to quantum data compression.Comment: 32 page
Dispersion of tracer particles in a compressible flow
The turbulent diffusion of Lagrangian tracer particles has been studied in a
flow on the surface of a large tank of water and in computer simulations. The
effect of flow compressibility is captured in images of particle fields. The
velocity field of floating particles has a divergence, whose probability
density function shows exponential tails. Also studied is the motion of pairs
and triplets of particles. The mean square separation is fitted to
the scaling form ~ t^alpha, and in contrast with the
Richardson-Kolmogorov prediction, an extended range with a reduced scaling
exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly
deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure
Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon
In this work we investigate the influence of the use of YSZ and CeO2/YSZ as
insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures
made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented
Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ
double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter-
diffusion layer. The characteristics of MFIS diodes were greatly improved by
the use of the double buffer. Using the same deposition conditions the memory
window could be increased from 0.3 V to 0.9 V. From the piezoelectric response,
nano-meter scale ferroelectric domains could be clearly identified in SBT thin
films.Comment: 5 pages, 9 figures, 13 refernece
Compressibility of Mixed-State Signals
We present a formula that determines the optimal number of qubits per message
that allows asymptotically faithful compression of the quantum information
carried by an ensemble of mixed states. The set of mixed states determines a
decomposition of the Hilbert space into the redundant part and the irreducible
part. After removing the redundancy, the optimal compression rate is shown to
be given by the von Neumann entropy of the reduced ensemble.Comment: 7 pages, no figur
- …