2,050 research outputs found

    Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels

    Full text link
    Two separated observers, by applying local operations to a supply of not-too-impure entangled states ({\em e.g.} singlets shared through a noisy channel), can prepare a smaller number of entangled pairs of arbitrarily high purity ({\em e.g.} near-perfect singlets). These can then be used to faithfully teleport unknown quantum states from one observer to the other, thereby achieving faithful transfrom one observer to the other, thereby achieving faithful transmission of quantum information through a noisy channel. We give upper and lower bounds on the yield D(M)D(M) of pure singlets (Ψ\ket{\Psi^-}) distillable from mixed states MM, showing D(M)>0D(M)>0 if \bra{\Psi^-}M\ket{\Psi^-}>\half.Comment: 4 pages (revtex) plus 1 figure (postscript). See also http://vesta.physics.ucla.edu/~smolin/ . Replaced to correct interchanged σx\sigma_x and σz\sigma_z near top of column 2, page

    A Note on Invariants and Entanglements

    Full text link
    The quantum entanglements are studied in terms of the invariants under local unitary transformations. A generalized formula of concurrence for NN-dimensional quantum systems is presented. This generalized concurrence has potential applications in studying separability and calculating entanglement of formation for high dimensional mixed quantum states.Comment: Latex, 11 page

    Entropic bounds on coding for noisy quantum channels

    Get PDF
    In analogy with its classical counterpart, a noisy quantum channel is characterized by a loss, a quantity that depends on the channel input and the quantum operation performed by the channel. The loss reflects the transmission quality: if the loss is zero, quantum information can be perfectly transmitted at a rate measured by the quantum source entropy. By using block coding based on sequences of n entangled symbols, the average loss (defined as the overall loss of the joint n-symbol channel divided by n, when n tends to infinity) can be made lower than the loss for a single use of the channel. In this context, we examine several upper bounds on the rate at which quantum information can be transmitted reliably via a noisy channel, that is, with an asymptotically vanishing average loss while the one-symbol loss of the channel is non-zero. These bounds on the channel capacity rely on the entropic Singleton bound on quantum error-correcting codes [Phys. Rev. A 56, 1721 (1997)]. Finally, we analyze the Singleton bounds when the noisy quantum channel is supplemented with a classical auxiliary channel.Comment: 20 pages RevTeX, 10 Postscript figures. Expanded Section II, added 1 figure, changed title. To appear in Phys. Rev. A (May 98

    Quantum state merging and negative information

    Full text link
    We consider a quantum state shared between many distant locations, and define a quantum information processing primitive, state merging, that optimally merges the state into one location. As announced in [Horodecki, Oppenheim, Winter, Nature 436, 673 (2005)], the optimal entanglement cost of this task is the conditional entropy if classical communication is free. Since this quantity can be negative, and the state merging rate measures partial quantum information, we find that quantum information can be negative. The classical communication rate also has a minimum rate: a certain quantum mutual information. State merging enabled one to solve a number of open problems: distributed quantum data compression, quantum coding with side information at the decoder and sender, multi-party entanglement of assistance, and the capacity of the quantum multiple access channel. It also provides an operational proof of strong subadditivity. Here, we give precise definitions and prove these results rigorously.Comment: 23 pages, 3 figure

    Entangling operations and their implementation using a small amount of entanglement

    Get PDF
    We study when a physical operation can produce entanglement between two systems initially disentangled. The formalism we develop allows to show that one can perform certain non-local operations with unit probability by performing local measurement on states that are weakly entangled.Comment: 4 pages, no figure

    Information-theoretic aspects of quantum inseparability of mixed states

    Get PDF
    Information-theoretic aspects of quantum inseparability of mixed states are investigated in terms of the α\alpha-entropy inequalities and teleportation fidelity. Inseparability of mixed states is defined and a complete characterization of the inseparable 2×22\times2 systems with maximally disordered subsystems is presented within the Hilbert-Schmidt space formalism. A connection between teleportation and negative conditional α\alpha-entropy is also emphasized.Comment: Revtex, 19 pages, to appear in Phys. Rev. A, vol. 54; one postscript figure available at request from [email protected]

    Tema Con Variazioni: Quantum Channel Capacity

    Full text link
    Channel capacity describes the size of the nearly ideal channels, which can be obtained from many uses of a given channel, using an optimal error correcting code. In this paper we collect and compare minor and major variations in the mathematically precise statements of this idea which have been put forward in the literature. We show that all the variations considered lead to equivalent capacity definitions. In particular, it makes no difference whether one requires mean or maximal errors to go to zero, and it makes no difference whether errors are required to vanish for any sequence of block sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl

    Characterizing entanglement with global and marginal entropic measures

    Full text link
    We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entaglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such states cannot be discriminated by the majorization criterion.Comment: 6 pages, 5 color figures in low resolution due to oversizing problems; to get the original high-resolution figures please contact the authors. Minor changes, final versio

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio
    corecore