9,707 research outputs found

    On The Origin of Super-Hot Electrons from Intense Laser Interactions with Solid Targets having Moderate Scale Length Preformed Plasmas

    Full text link
    We use PIC modeling to identify the acceleration mechanism responsible for the observed generation of super-hot electrons in ultra-intense laser-plasma interactions with solid targets with pre-formed plasma. We identify several features of direct laser acceleration (DLA) that drive the generation of super-hot electrons. We find that, in this regime, electrons that become super-hot are primarily injected by a looping mechanism that we call loop-injected direct acceleration (LIDA)

    HOLLOTRON switch for megawatt lightweight space inverters

    Get PDF
    The feasibility of satisfying the switching requirements for a megawatt ultralight inverter system using HOLLOTRON switch technology was determined. The existing experimental switch hardware was modified to investigate a coaxial HOLLOTRON switch configuration and the results were compared with those obtained for a modified linear HOLLOTRON configuration. It was concluded that scaling the HOLLOTRON switch to the current and voltage specifications required for a megawatt converter system is indeed feasible using a modified linear configuration. The experimental HOLLOTRON switch operated at parameters comparable to the scaled coaxial HOLLOTRON. However, the linear HOLLOTRON data verified the capability for meeting all the design objectives simultaneously including current density (greater than 2 A/sq cm), voltage (5 kV), switching frequency (20 kHz), switching time (300 ns), and forward voltage drop (less than or equal to 20 V). Scaling relations were determined and a preliminary design was completed for an engineering model linear HOLLOTRON switch to meet the megawatt converter system specifications

    Quantum data processing and error correction

    Get PDF
    This paper investigates properties of noisy quantum information channels. We define a new quantity called {\em coherent information} which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.Comment: LaTeX, 20 page

    Enhancing Bremsstrahlung Production From Ultraintense Laser-Solid Interactions With Front Surface Structures

    Full text link
    We report the results of a combined study of particle-in-cell and Monte Carlo modeling that investigates the production of Bremsstrahlung radiation produced when an ultraintense laser interacts with a tower-structured target. These targets are found to significantly narrow the electron angular distribution as well as produce significantly higher energies. These features combine to create a significant enhancement in directionality and energy of the Bremstrahlung radiation produced by a high-Z converter target. These studies employ short-pulse, high intensity laser pulses, and indicate that novel target design has potential to greatly enhance the yield and narrow the directionality of high energy electrons and γ\gamma-rays. We find that the peak γ\gamma-ray brightness for this source is 6.0×\times1019^{19} s1mm2mrad2{\rm s^{-1}mm^{-2}mrad^{-2}} at 10MeV and 1.4×\times1019^{19} s1mm2mrad2{\rm s^{-1}mm^{-2}mrad^{-2}} at 100MeV (0.1%\% bandwidth).Comment: arXiv admin note: text overlap with arXiv:1310.328

    Dispersion of tracer particles in a compressible flow

    Full text link
    The turbulent diffusion of Lagrangian tracer particles has been studied in a flow on the surface of a large tank of water and in computer simulations. The effect of flow compressibility is captured in images of particle fields. The velocity field of floating particles has a divergence, whose probability density function shows exponential tails. Also studied is the motion of pairs and triplets of particles. The mean square separation is fitted to the scaling form ~ t^alpha, and in contrast with the Richardson-Kolmogorov prediction, an extended range with a reduced scaling exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure

    Measurement of heavy-hole spin dephasing in (InGa)As quantum dots

    Full text link
    We measure the spin dephasing of holes localized in self-assembled (InGa)As quantum dots by spin noise spectroscopy. The localized holes show a distinct hyperfine interaction with the nuclear spin bath despite the p-type symmetry of the valence band states. The experiments reveal a short spin relaxation time {\tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time {\tau}_{slow}^{hh} which exceeds the latter by more than one order of magnitude. The two times are attributed to heavy hole spins aligned perpendicular and parallel to the stochastic nuclear magnetic field. Intensity dependent measurements and numerical simulations reveal that the long relaxation time is still obscured by light absorption, despite low laser intensity and large detuning. Off-resonant light absorption causes a suppression of the spin noise signal due to the creation of a second hole entailing a vanishing hole spin polarization.Comment: accepted to be published in AP

    Indeterminate-length quantum coding

    Get PDF
    The quantum analogues of classical variable-length codes are indeterminate-length quantum codes, in which codewords may exist in superpositions of different lengths. This paper explores some of their properties. The length observable for such codes is governed by a quantum version of the Kraft-McMillan inequality. Indeterminate-length quantum codes also provide an alternate approach to quantum data compression.Comment: 32 page

    Perturbative expansions for the fidelities and spatially correlated dissipation of quantum bits

    Full text link
    We construct generally applicable short-time perturbative expansions for some fidelities, such as the input-output fidelity, the entanglement fidelity, and the average fidelity. Successive terms of these expansions yield characteristic times for the damping of the fidelities involving successive powers of the Hamiltonian. The second-order results, which represent the damping rates of the fidelities, are extensively discussed. As an interesting application of these expansions, we use them to study the spatially-correlated dissipation of quantum bits. Spatial correlations in the dissipation are described by a correlation function. Explicit conditions are derived for independent decoherence and for collective decoherence.Comment: Minor changes in discussion
    corecore