10,640 research outputs found
Indeterminate-length quantum coding
The quantum analogues of classical variable-length codes are
indeterminate-length quantum codes, in which codewords may exist in
superpositions of different lengths. This paper explores some of their
properties. The length observable for such codes is governed by a quantum
version of the Kraft-McMillan inequality. Indeterminate-length quantum codes
also provide an alternate approach to quantum data compression.Comment: 32 page
A SiGe HEMT Mixer IC with Low Conversion Loss
The authors present the first SiGe HEMT mixer integrated circuit. The active mixer stage, operating up to 10GHz RF, has been designed and realized using a 0.1µ µµ µm gate length transistor technology. The design is based on a new large-signal simulation model developed for the SiGe HEMT. Good agreement between simulation and measurement is reached. The mixer exhibits 4.0dB and 4.7dB conversion loss when down-converting 3.0GHz and 6.0GHz signals, respectively, to an intermediate frequency of 500MHz using high-side injection of 5dBm local oscillator power. Conversion loss is less than 8dB for RF frequencies up to 10GHz with a mixer linearity of –8.8dBm input related 1dB compression point
Directional optical switching and transistor functionality using optical parametric oscillation in a spinor polariton fluid
Over the past decade, spontaneously emerging patterns in the density of
polaritons in semiconductor microcavities were found to be a promising
candidate for all-optical switching. But recent approaches were mostly
restricted to scalar fields, did not benefit from the polariton's unique
spin-dependent properties, and utilized switching based on hexagon far-field
patterns with 60{\deg} beam switching (i.e. in the far field the beam
propagation direction is switched by 60{\deg}). Since hexagon far-field
patterns are challenging, we present here an approach for a linearly polarized
spinor field, that allows for a transistor-like (e.g., crucial for
cascadability) orthogonal beam switching, i.e. in the far field the beam is
switched by 90{\deg}. We show that switching specifications such as
amplification and speed can be adjusted using only optical means
Synchronized single electron emission from dynamical quantum dots
We study synchronized quantized charge pumping through several dynamical
quantum dots (QDs) driven by a single time modulated gate signal. We show that
the main obstacle for synchronization being the lack of uniformity can be
overcome by operating the QDs in the decay cascade regime. We discuss the
mechanism responsible for lifting the stringent uniformity requirements. This
enhanced functionality of dynamical QDs might find applications in
nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP
Compressibility of Mixed-State Signals
We present a formula that determines the optimal number of qubits per message
that allows asymptotically faithful compression of the quantum information
carried by an ensemble of mixed states. The set of mixed states determines a
decomposition of the Hilbert space into the redundant part and the irreducible
part. After removing the redundancy, the optimal compression rate is shown to
be given by the von Neumann entropy of the reduced ensemble.Comment: 7 pages, no figur
Reconstruction of 2D Al Ti on TiB in an aluminium melt
It has been widely considered that Al Ti is involved in the aluminium nucleation on TiB , although the mechanism has not been fully understood. In this paper molecular dynamics has been conducted to investigate this phenomenon at an atomistic scale. It was found that a two-dimensional Al Ti layer may remain on TiB above the aluminium liquidus. In addition, the results showed that this 2D Al Ti undergoes interface reconstruction by forming a triangular pattern. This triangular pattern consists of different alternative stacking sequences. The transition region between the triangles forms an area of strain concentration. By means of this mechanism, this interfacial Al Ti layer stabilizes itself by localizing the large misfit strain between TiB and Al Ti This reconstruction is similar to the hdp-fcc interface reconstruction in other systems which has been observed experimentally.EPSR
Two-way coupling of FENE dumbbells with a turbulent shear flow
We present numerical studies for finitely extensible nonlinear elastic (FENE)
dumbbells which are dispersed in a turbulent plane shear flow at moderate
Reynolds number. The polymer ensemble is described on the mesoscopic level by a
set of stochastic ordinary differential equations with Brownian noise. The
dynamics of the Newtonian solvent is determined by the Navier-Stokes equations.
Momentum transfer of the dumbbells with the solvent is implemented by an
additional volume forcing term in the Navier-Stokes equations, such that both
components of the resulting viscoelastic fluid are connected by a two-way
coupling. The dynamics of the dumbbells is given then by Newton's second law of
motion including small inertia effects. We investigate the dynamics of the flow
for different degrees of dumbbell elasticity and inertia, as given by
Weissenberg and Stokes numbers, respectively. For the parameters accessible in
our study, the magnitude of the feedback of the polymers on the macroscopic
properties of turbulence remains small as quantified by the global energy
budget and the Reynolds stresses. A reduction of the turbulent drag by up to
20% is observed for the larger particle inertia. The angular statistics of the
dumbbells shows an increasing alignment with the mean flow direction for both,
increasing elasticity and inertia. This goes in line with a growing asymmetry
of the probability density function of the transverse derivative of the
streamwise turbulent velocity component. We find that dumbbells get stretched
referentially in regions where vortex stretching or bi-axial strain dominate
the local dynamics and topology of the velocity gradient tensor.Comment: 20 pages, 10 Postscript figures (Figures 5 and 10 in reduced quality
Source localisation on aircraft in flight - new measurements with the DLR research aircraft Airbus 320 ATRA
Fly-over measurements with a large microphone array were performed with the Airbus
A320-232 research aircraft ATRA of DLR. A large multi-arm spiral array was set up on
the end of the runway of the airport. The aircraft trajectory was estimated from the vertical
distance and time delays measured with an array of vertically mounted laser distance meters
and GNSS trajectories recorded on board of the aircraft. Source localisation maps were
obtained from a hybrid deconvolution method. The source powers in different regions of
the aircraft were calculated by integrating over the source regions. The total power in the
whole interrogation area matches the power in the far-field spectra, apart from contributions
from sources on the ground plane which are reduced by focusing the array on the aircraft.
Results from fly-overs in the same or in different configurations can be compared on the
basis of the integration results and the individual sources can be ranked according to their
contribution to the overall sound pressure
- …