11,207 research outputs found

    Antenna pointing compensation based on precision optical measurement techniques

    Get PDF
    The pointing control loops of the Deep Space Network 70 meter antennas extend only to the Intermediate Reference Structure (IRS). Thus, distortion of the structure forward of the IRS due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade blind pointing accuracy. A system is described which can provide real time bias commands to the pointing control system to compensate for environmental effects on blind pointing performance. The bias commands are computed in real time based on optical ranging measurements of the structure from the IRS to a number of selected points on the primary and secondary reflectors

    Indeterminate-length quantum coding

    Get PDF
    The quantum analogues of classical variable-length codes are indeterminate-length quantum codes, in which codewords may exist in superpositions of different lengths. This paper explores some of their properties. The length observable for such codes is governed by a quantum version of the Kraft-McMillan inequality. Indeterminate-length quantum codes also provide an alternate approach to quantum data compression.Comment: 32 page

    Remote State Preparation

    Full text link
    Quantum teleportation uses prior entanglement and forward classical communication to transmit one instance of an unknown quantum state. Remote state preparation (RSP) has the same goal, but the sender knows classically what state is to be transmitted. We show that the asymptotic classical communication cost of RSP is one bit per qubit - half that of teleportation - and becomes even less when transmitting part of a known entangled state. We explore the tradeoff between entanglement and classical communication required for RSP, and discuss RSP capacities of general quantum channels.Comment: 4 pages including 1 epsf figure; v3 has an additional author and discusses relation to work of Devetak and Berger (quant-ph/0102123); v4 improves low-entanglement protocols without back communication to perform as well as low-entanglement protocols with back communication; v5 (journal version) has a few small change

    Quantum channels with a finite memory

    Full text link
    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no nformation is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless.Comment: 7 Pages, RevTex, Jrnl versio

    The quantum capacity is properly defined without encodings

    Get PDF
    We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper.Comment: 19 pages revtex with two eps figures. Submitted to Phys. Rev. A. Replaced with revised and simplified version, and improved references, etc. Why can't the last line of the comments field end with a period using this web submission form

    Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon

    Full text link
    In this work we investigate the influence of the use of YSZ and CeO2/YSZ as insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter- diffusion layer. The characteristics of MFIS diodes were greatly improved by the use of the double buffer. Using the same deposition conditions the memory window could be increased from 0.3 V to 0.9 V. From the piezoelectric response, nano-meter scale ferroelectric domains could be clearly identified in SBT thin films.Comment: 5 pages, 9 figures, 13 refernece

    Synchronized single electron emission from dynamical quantum dots

    Full text link
    We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating the QDs in the decay cascade regime. We discuss the mechanism responsible for lifting the stringent uniformity requirements. This enhanced functionality of dynamical QDs might find applications in nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP

    Generalized remote state preparation: Trading cbits, qubits and ebits in quantum communication

    Get PDF
    We consider the problem of communicating quantum states by simultaneously making use of a noiseless classical channel, a noiseless quantum channel and shared entanglement. We specifically study the version of the problem in which the sender is given knowledge of the state to be communicated. In this setting, a trade-off arises between the three resources, some portions of which have been investigated previously in the contexts of the quantum-classical trade-off in data compression, remote state preparation and superdense coding of quantum states, each of which amounts to allowing just two out of these three resources. We present a formula for the triple resource trade-off that reduces its calculation to evaluating the data compression trade-off formula. In the process, we also construct protocols achieving all the optimal points. These turn out to be achievable by trade-off coding and suitable time-sharing between optimal protocols for cases involving two resources out of the three mentioned above.Comment: 15 pages, 2 figures, 1 tabl

    Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions

    Full text link
    Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences in the turbulent velocity fluctuations, the cloud cover and the convective buoyancy flux decrease across the layer with increasing Rayleigh number. At the highest Rayleigh numbers the system is found in a two-layer regime, a dry cloudless and stably stratified layer with low turbulence level below a fully saturated and cloudy turbulent one which equals classical Rayleigh-Benard convection layer. Both are separated by a strong inversion that gets increasingly narrower for growing Rayleigh number.Comment: 19 pages, 13 Postscript figures, Figures 10,11,12,13, in reduced qualit

    Fast high-efficiency integrated waveguide photodetectors using novel hybrid vertical/butt coupling geometry

    Get PDF
    We report a novel coupling geometry for integrated waveguide photodetectors−a hybrid vertical coupling/butt coupling scheme that allows the integration of fast, efficient, photodetectors with conventional double heterostructure waveguides. It can be employed to yield a planar, or pseudo-planar, surface that supports further levels of integration. The approach is demonstrated with a 25-µm-long p-i-n detector integrated with an InP/InGaAsP/InP waveguide, which displays a high (~90%) efficiency and large (~15 GHz) bandwidth. This is the fastest high-efficiency integrated waveguide photodetector reported to date
    corecore