61 research outputs found

    The impact of physiological noise on hemodynamic-derived estimates of directed functional connectivity

    Get PDF
    This work was supported by a grant of the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, Grant Number EXC 1086).Peer reviewedPostprintPostprin

    The rostro-caudal gradient in the prefrontal cortex and its modulation by subthalamic deep brain stimulation in Parkinson’s disease

    Get PDF
    Acknowledgements The authors thank Benjamin Rahm (University of Freiburg) and Michael Fox (Harvard Medical School) for valuable comments on a previous version of this manuscript. This work was supported by a grant of the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant number EXC 1086) to C.P.K., F.A., T.P., B.O.S., C.W, and V.A.C.; A.H. was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, Emmy Noether Stipend 410169619 and 424778381 – TRR 295) as well as Deutsches Zentrum für Luft- und Raumfahrt (DynaSti grant within the EU Joint Programme Neurodegenerative Disease Research, JPND). Funding Open Access funding enabled and organized by Projekt DEAL.Peer reviewedPublisher PD

    A Detailed Analysis of the Murine TAP Transporter Substrate Specificity

    Get PDF
    The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though murine systems are widely used for basic studies of antigen processing and presentation.We performed a detailed experimental analysis of murine TAP binding specificity by measuring the binding affinities of 323 peptides. Based on this experimental data, a computational model of murine TAP specificity was constructed. The model was compared to previously generated data on human and murine TAP specificities. In addition, the murine TAP specificities for known epitopes and random peptides were predicted and compared to assess the impact of murine TAP selectivity on epitope selection.Comparisons to a previously constructed model of human TAP specificity confirms the well-established differences for peptide substrates with positively charged C-termini. In addition these comparisons show that several residues at the N-terminus of peptides which strongly influence binding to human TAP showed little effect on binding to murine TAP, and that the overall influence of the aminoterminal residues on peptide affinity for murine TAP is much lower than for the human transporter. Murine TAP also partly prefers different hydrophobic amino acids than human TAP in the carboxyterminal position. These species-dependent differences in specificity determined in vitro are shown to correlate with the epitope repertoire recognized in vivo. The quantitative model of binding specificity of murine TAP developed herein should be useful for interpreting epitope mapping and immunogenicity data obtained in humanized mouse models

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA

    No full text
    The transcription-coupled repair pathway (TC-NER) plays a vital role in removing transcription-blocking DNA lesions, particularly UV-induced damage. Clinical symptoms of the two TC-NER-deficiency syndromes, Cockayne syndrome (CS) and UV-hypersensitivity syndrome (UVSS) are dissimilar and the underlying molecular mechanism causing this difference in disease pathology is not yet clearly understood. UV-stimulated scaffold protein A (UVSSA) has been identified recently as a new causal gene for UVSS. Here we describe a functional homolog of the human UVSSA gene in the nematode Caenorhabditis elegans, uvs-1 (UVSSA-like-1). Mutations in uvs-1 render the animals hypersensitive to UV-B irradiation and transcription-blocking lesion-inducing illudin-M, similar to mutations in TC-NER deficient mutants. Moreover, we demonstrate that TC-NER factors including UVS-1 are required for the survival of the adult animals after UV-treatment. (c) 2016 Elsevier B.V. All rights reserved

    MPK-1/ERK pathway regulates DNA damage response during development through DAF-16/FOXO

    No full text
    Ultraviolet (UV) induces distorting lesions to the DNA that can lead to stalling of the RNA polymerase II (RNAP II) and that are removed by transcription-coupled nucleotide excision repair (TC-NER). In humans, mutations in the TC-NER genes CSA and CSB lead to severe postnatal developmental defects in Cockayne syndrome patients. In Caenorhabditis ele-gans, mutations in the TC-NER genes csa-1 and csb-1, lead to developmental growth arrest upon UV treatment. We conducted a genetic suppressor screen in the nematode to identify mutations that could suppress the developmental defects in csb-1 mutants. We found that mutations in the ERK1/2 MAP kinase mpk-1 alleviate the developmental retardation in TC-NER mutants, while constitutive activation of the RAS-MAPK pathway exacerbates the DNA damage-induced growth arrest. We show that MPK-1 act via insulin/insulin-like signaling pathway and regulates the FOXO transcription factor DAF-16 to mediate the developmental DNA damage response
    corecore