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Abstract 1 

Measuring the strength of directed functional interactions between brain regions is fundamental to 2 

understand neural networks. Functional near-infrared spectroscopy (fNIRS) is a suitable method to 3 

map directed interactions between brain regions but is based on the neurovascular coupling. It thus 4 

relies on vasomotor reactivity and is potentially biased by non-neural physiological noise. To 5 

investigate the impact of physiological noise on fNIRS-based estimates of directed functional 6 

connectivity within the rostro-caudal hierarchical organization of the prefrontal cortex (PFC), we 7 

systematically assessed the effects pathological perturbations of vasomotor reactivity and externally 8 

triggered arterial blood pressure (aBP) fluctuations.  9 

Fifteen patients with unilateral stenosis of the internal carotid artery (ICA) underwent multi-channel 10 

fNIRS during rest and during metronomic breathing, inducing aBP oscillations at .1 Hz. Comparisons 11 

between the healthy and pathological hemispheres served as quasi-experimental manipulation of the 12 

neurovascular system’s capability for vasomotor reactivity. Comparisons between rest and breathing 13 

served as experimental manipulation of two different levels of physiological noise that were expected 14 

to differ between healthy and pathological hemispheres. 15 

In the hemisphere affected by ICA stenosis, the rostro-caudal hierarchical organization of the PFC was 16 

compromised reflecting the pathological effect on the vascular and neural level. Breathing-induced 17 

aBP oscillations biased the magnitude of directed interactions in the PFC, but could be adjusted using 18 

either the aBP time series (intra-individual approach) or the aBP-induced fNIRS signal variance (inter-19 

individual approach). Multi-channel fNIRS hence provides a sound basis for analyses of directed 20 

functional connectivity as potential bias due to physiological noise can be effectively controlled for. 21 

Key words 22 

Prefrontal cortex; Hierarchical organization; Directed interactions; Near-infrared spectroscopy; 23 

Physiological noise; Stenosis  24 
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Introduction 37 

Understanding functional networks of the brain is an ongoing challenge in human neuroscience. 38 

Approaches to disentangle the functional dynamics between regions of the human brain are mainly 39 

based on non-invasive imaging methods that often face tradeoffs between signal-to-noise ratio, 40 

temporal and spatial resolution (Scouten et al. 2006). Given the high spatial but low temporal 41 

resolution of the commonly used functional magnetic resonance imaging (fMRI), most extant 42 

approaches on connectivity are based on correlative measures. However, a high temporal resolution is 43 

particularly critical when the directionalities of functional connections are of interest (Roebroeck et al. 44 

2005; Mader et al. 2008). Multi-channel functional near-infrared spectroscopy (fNIRS) as an optical 45 

method to measure cortical hemodynamics provides such high temporal resolutions, an adequate 46 

signal quality and a sufficient spatial resolution to assess large-scale cortical networks. 47 

Schumacher et al. (2019) recently demonstrated that Granger-causal cross-spectral analysis (Granger 48 

1969; Schelter et al. 2006) of resting-state fNIRS data is a promising approach to characterize the 49 

rostro-caudally directed hierarchical organization of the prefrontal cortex (PFC; see also Medvedev, 50 

2014). The functional architecture of the PFC is thought to implement different levels of cognitive 51 

control by processing information through a rostral-to-caudal hierarchy of neural networks, thereby 52 

concretizing abstract ideas into actual actions according to specific rules (Badre and D’Esposito, 2007; 53 

Blumenfeld et al., 2013; Christoff and Gabrieli, 2000; Fuster, 2008; Koechlin et al., 2003; for a recent 54 

review see Badre and Nee, 2018). Directly assessing the mode of action of the PFC and its integrity 55 

with a convenient, high-resolution imaging method like multi-channel fNIRS may hence constitute a 56 

promising approach for cognitive and clinical neuroscience that complements insights derived from 57 

conventional fMRI.  58 

However, the suitability of Granger-causality for analyses of hemodynamic measurements was subject 59 

to controversy in the past (Friston et al., 2014; Schippers et al., 2011; Smith et al., 2012; Stokes and 60 

Purdon, 2017; Webb et al., 2013; for reviews see Deshpande and Hu, 2012; Friston et al., 2013). 61 

Specifically, the sampling rate of the measurement relative to the time scale of the causal mechanism 62 

has been identified as a critical parameter (Deshpande et al. 2010; Barnett and Seth 2017) – an issue 63 
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already put forward by Granger (1969). Yet, while this constitutes a serious limitation for fMRI with 64 

sampling rates of only .5-2 Hz, fNIRS samples at an order of magnitude faster. Commercially 65 

available multi-channel fNIRS systems usually have sampling rates in the range of 10-250 Hz 66 

(Scholkmann et al. 2014) thus providing a sufficient temporal resolution of at least 10 Hz (Roebroeck 67 

et al. 2005) for estimating the directionality of influences within large-scale cortical networks. 68 

The impact of physiological noise on Granger-causality inference is another potential issue of concern 69 

which has previously received only little attention. Physiological noise particularly concerns analyses 70 

of fNIRS data as the near-infrared light has to traverse the scalp and the skull before reaching the brain 71 

and thus also samples from extra-cerebral (i.e. non-neural) tissue (Okada et al. 1997; Germon et al. 72 

1999; Brigadoi and Cooper 2015). Apart from the extra-cerebral signal component, spontaneous slow 73 

oscillations in the arterial blood pressure (aBP) induce autoregulatory vasomotor activity (Julien 2006) 74 

and contribute to intra-cerebral signal variance in the frequency band of .1 Hz (Tong and Frederick 75 

2010; Noordmans et al. 2018) commonly used for connectivity analyses (Biswal et al. 1995). Besides 76 

these aBP-induced low frequency oscillations other systemic components originating from cardiac 77 

pulsation, respiration and vasomotion unrelated to neural activity can bias analyses based on 78 

functional measurements of brain hemodynamics (Frederick et al. 2012; Winder et al. 2017). These 79 

components not only differ in their spectral properties, but also in their propagation along the 80 

vasculature, i.e. they exhibit different spatiotemporal profiles (Frederick et al. 2012; Tong et al. 2012). 81 

Optical measurements of blood oxygenation at the periphery (e.g. the finger) provide an easy way to 82 

capture a wide spectrum of systemic hemodynamic processes and can be used to reduce physiological 83 

noise in functional measurements (Frederick et al. 2012; Tong et al. 2013; Sutoko et al. 2019). 84 

Analyses contrasting different conditions in a task paradigm to find cortical activations associated with 85 

specific brain functions are generally assumed to be robust against extra-cerebral physiological noise 86 

as well as against intra-cerebral aBP fluctuations (but see Takahashi et al., 2011). However, such 87 

signal perturbations may possibly limit the reliability and validity of fNIRS-based Granger-causal 88 

cross-spectral estimates of directed connectivity. More generally, any estimation of (directed as well as 89 

undirected) connectivity based on hemodynamic neuroimaging such as fNIRS (but also fMRI) faces 90 
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the problem of distinguishing signal covariation induced by neural activity from those induced by non-91 

neural fluctuations of blood flow, blood pressure, or respiration (Tong et al. 2013; Pfurtscheller et al. 92 

2017). Concerning resting-state functional connectivity estimated from hemodynamic measurements, 93 

it is hence critical to minimize the impact of physiological noise and to ascertain that the measurement 94 

is sensitive and specific to neural processes. 95 

The present study therefore addressed the effects of physiological noise and pathological cerebral 96 

hemodynamics on Granger-causal cross-spectral analyses of directed connectivity based on multi-97 

channel fNIRS data. Specifically, we investigated the influence of peripherally induced physiological 98 

noise and impaired vasomotor reactivity on the reconstruction of the rostro-caudally directed 99 

hierarchical organization in the PFC using a frequency-domain measure of Granger-causality (cf. 100 

Schumacher et al., 2019). To this end, a sample of patients with unilateral stenosis of the internal 101 

carotid artery (ICA) was assessed with fNIRS during metronomic breathing and during rest. ICA 102 

stenosis leads to reduced cerebrovascular reserve capacity (Bokkers et al. 2010; Hartkamp et al. 2012), 103 

impairment of cerebral autoregulation (Reinhard et al. 2003b), affects neurovascular coupling (Rossini 104 

et al. 2004) and can cause cognitive impairments (Novak and Hajjar 2010; Novak 2012). As severe 105 

ICA stenosis impairs cerebral autoregulation (Reinhard et al. 2003b), the hemisphere affected by ICA 106 

stenosis has only limited capacity to compensate systemic low-frequency high-amplitude aBP 107 

oscillations. Metronomic breathing induces strong peripheral physiological noise in terms of low-108 

frequency arterial blood pressure (aBP) oscillations that contaminate the fNIRS signal. Comparing 109 

resting-state and metronomic breathing in patients with unilateral ICA stenosis thus allows 110 

differentiating between the systemic effect of amplified peripheral physiological noise (i.e. aBP 111 

oscillations), which contributes to both the intra- and extra-cerebral components of the fNIRS signal, 112 

and the intra-cerebral effect of a compromised neurovascular system (i.e. ICA stenosis), that was 113 

expected to cause differential effects of breathing-induced aBP oscillations in the patients’ healthy and 114 

pathological hemispheres. 115 
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Methods 116 

Patients 117 

Fifteen patients with severe unilateral stenosis or occlusion of the internal carotid artery (ICA) were 118 

included and gave written informed consent prior to participation (also see Reinhard et al., 2014). The 119 

advantage of using unilateral stenosis of the ICA as a quasi-experimental manipulation is that it 120 

facilitates the assessment of pathological effects by comparing the affected and healthy hemisphere 121 

within patients without relying on a healthy control group, yielding a higher statistical power. 122 

Transcranial duplex sonography was used to determine the degree of stenosis (de Bray and Glatt 1995) 123 

and the degree of intracranial collateral flow (Reinhard et al. 2003a). Magnetic resonance imaging 124 

(MRI) scans were acquired from all patients and revealed a large lesion from the resection of a 125 

hemangioblastoma in one patient, who was consequently excluded from the present analyses. A 126 

second patient had to be excluded due to technical problems during the resting-state fNIRS 127 

measurement, leaving a sample of 13 patients for analyses (mean age ± standard deviation: 63.5 ± 10 128 

years, 3 female; see Reinhard et al., 2014 for further details). The study was approved by the local 129 

Ethics Committee. 130 

Data acquisition 131 

Arterial blood pressure (aBP) was continuously recorded via finger photoplethysmography (Finapres 132 

2300, Ohmeda, Englewood, CO, USA) with the subject’s hand positioned at heart level. Multi-channel 133 

fNIRS measurements were performed using an ETG 4000 (Hitachi Medical Co., Tokyo, Japan) 134 

providing 52 channels and a sampling rate of 10 Hz. In-house Matlab (version 2015a, The 135 

MathWorks, Natick, MA, USA) code was used to convert the measured light absorption into 136 

oxygenated and deoxygenated hemoglobin concentration changes according to the modified Lambert-137 

Beer-Law (Delpy et al. 1988). The fNIRS probes were placed on the forehead by aligning the center 138 

probes with the sagittal midline and positioning the lower center probe at a distance of 1.5 cm above 139 

the nasion, such that the fNIRS channels were evenly distributed across the bilateral PFC. The fNIRS 140 

channel positions are illustrated in Figure 1. Patients were placed in a supine position with 50° 141 

inclination of the upper body. The first measurement was conducted during a 15 minute period of rest. 142 



The impact of physiology on functional connectivity Schumacher et al. 

20190725_Schumacher_Kaller_Manuscript.docx 8 

During the second measurement patients were instructed to breath at a rate of 6 cycles/minute (i.e. .1 143 

Hz) with low tidal volumes over a period of 200 s. CO2 partial pressure was measured during 144 

expiration using an infrared capnometer (Normocap©, Datex, Finland). We analyzed only the first 200 145 

s of the resting state measurement, because the length of the time series potentially impacts on the 146 

connectivity estimation (see below) and the direct comparison between 15 min resting state and 200 s 147 

metronomic breathing would have hence been biased. However, a control analysis confirmed that 148 

there were no relevant differences between 4 consecutive, 200 s long time windows of the 15 min 149 

resting-state measurements (Supplementary Model S1).  150 

Data analysis 151 

The aBP signal was low-pass filtered (Fourier filter, 5 Hz cutoff frequency) and downsampled to the 152 

10 Hz sampling rate of the fNIRS measurement. To avoid bias of the Granger-causality estimates (see 153 

below), the fNIRS data was not filtered or resampled (Florin et al. 2010; Barnett and Seth 2011). 154 

However, as fNIRS is prone to movement-induced artifacts, which can cause spurious connectivity 155 

(Satterthwaite et al. 2012; Santosa et al. 2017), the preprocessing requires an artifact correction step. 156 

Therefore, we applied the correlation-based signal improvement (CBSI) (Cui et al. 2010), an 157 

established method that effectively removes motion artifacts, increases the contrast-to-noise ratio and 158 

enhances the sensitivity of the signal (Cui et al. 2010; Brigadoi et al. 2014; Racz et al. 2017; 159 

Fairclough et al. 2018). It is based on the assumption that the oxygenated and the deoxygenated 160 

hemoglobin concentrations are anticorrelated; as a consequence, the resulting time series of 161 

oxygenated and deoxygenated hemoglobin are perfectly anticorrelated and have identical spectral 162 

properties. However, the assumptions implied by the CBSI method are unlikely to be always met. We 163 

therefore provide supplementary control analyses of the connectivity derived from the uncorrected 164 

oxygenated and deoxygenated hemoglobin signals (Supplementary Models S2-S5). Directed 165 

functional connectivity was estimated from the fNIRS measurements by directed coherence (DC) 166 

(Schelter et al. 2006), a cross-spectral measure of Granger-causality, using the frequency domain 167 

multivariate toolbox (www.fdm.uni-freiburg.de/Toolboxes/fdma-toolbox). As indicated by the term 168 

coherence, DC is a frequency-domain measure and is calculated by fitting a vector autoregressive 169 

(VAR) model, i.e. each time series is explained by its own past, as well as by the past of at least one 170 

http://www.fdm.uni-freiburg.de/Toolboxes/fdma-toolbox
http://www.fdm.uni-freiburg.de/Toolboxes/fdma-toolbox


The impact of physiology on functional connectivity Schumacher et al. 

20190725_Schumacher_Kaller_Manuscript.docx 9 

second time series using multiple lags. The series of estimated autoregression coefficients resulting 171 

from the multiple lags are then transformed into the frequency domain (for details see Schelter et al., 172 

2006). Thus, DC estimated from fNIRS data represents the strength and the direction of influences 173 

exerted between cortical areas in a certain frequency. For the connectivity estimates corrected for the 174 

potential bias of aPB fluctuations, we included the aBP measurements in the VAR models, yielding 175 

the trivariate – i.e. partial – DC (PDC). Thus, PDC estimates represent the influences between cortical 176 

areas with the influences mediated by systemic physiological noise (i.e. aBP fluctuations) being 177 

removed. VAR models were fitted with a model order of 20 (i.e. 20 lags), corresponding to the past 2 s 178 

of the time series., The resulting model coefficients were zero-padded to the length of the time series 179 

before the Fourier transformation in order to yield a smooth spectral estimate. As functional 180 

connectivity is apparent in the low-frequency component of hemodynamic fluctuations (Biswal et al. 181 

1995), and to cover the power peak in the fNIRS signal induced by metronomic breathing at .1 Hz, we 182 

used the maximum between .06 and .12 Hz of each (P)DC spectrum for further statistical analysis. The 183 

(P)DC was entered as the dependent variable in linear mixed effects models. Mixed models were fitted 184 

using the lme4 package (version 1.1-14) (Bates et al. 2015) in R statistics (version 3.4.2; http://cran.r-185 

project.org) with unstructured variance-covariance matrices. The lmerTest package (version 2.0-33) 186 

(Kuznetsova et al. 2016) was used to assess the significance of predictor terms (Type III F-statistics 187 

with Satterthwaite's approximation of degrees of freedom). Post-hoc comparisons and calculation of 188 

confidence intervals were performed using the lsmeans package (version 2.27-2) (Lenth 2016). As the 189 

focus of the present study was on the rostro-caudal gradient of the PFC, fixed effects of all models 190 

contained the factor direction of influences, distinguishing between influences in rostral-to-caudal and 191 

caudal-to-rostral direction (Fig. 1). As recently shown (Schumacher et al. 2019), the directionality of 192 

rostro-caudal functional connectivity varies across PFC regions (see also Badre and Nee, 2018; 193 

Margulies et al., 2016; Nee and D’Esposito, 2016). In accordance, present models were specified with 194 

a random slope allowing for varying effects of direction for each pair of homologues connections. 195 

Additionally a random intercept for participant was included in each model. Fixed effect terms of each 196 

model are listed in Table 1; predicted marginal means are provided in Supplementary Table 1; for 197 

random effects see Supplementary Table 2. 198 

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
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Data visualization 199 

For spatial visualization data were rendered on a standardized cortical surface derived from an 200 

independent sample of healthy subjects (n = 20; C.P. Kaller, K. Schumacher, unpublished data). In this 201 

sample, fNIRS probes were placed in the same standardized manner (see above) while location and 202 

irradiation angles of fNIRS probes with respect to the subject’s head were recorded using a PATRIOT 203 

digitizer (Polhemus Inc., VT). Registration included recording of three fiducials (nasion, left/right 204 

preauricular points) and a scattered point-wise sampling of the head surface for coregistration with 205 

individual anatomical MRIs based on an iterative closest point procedure. Group averages of channel 206 

positions were calculated after normalization of individual channel positions into Montreal 207 

Neurological Institute (MNI) space using deformation fields derived from the segmentation of 208 

anatomical MRIs with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) based on default prior 209 

maps for gray and white matter and cerebrospinal fluid. A 3D Gaussian kernel with 30 mm full width 210 

at half maximum was applied to render the data at the averaged channel positions on the standard 211 

cortical surface (see also Schumacher et al., 2019, for further details). 212 

F1 213 

 

Figure 1: Connections between fNIRS channels analyzed in the present study. Directed connectivity between 214 
neighboring channels within the PFC was analyzed along the rostro-caudal axis. Black arrows indicate rostro-215 
caudally directed connections, whereas gray arrows indicate caudo-rostrally directed connections. 216 

Results 217 

In the present work we analyzed the effects of amplified peripheral physiological noise (i.e. aBP 218 

oscillations) and of a compromised vasomotor reactivity (i.e. ICA stenosis) on the estimation of the 219 

rostro-caudally directed hierarchical organization of the PFC. Multi-channel fNIRS measurements 220 
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were acquired in patients with unilateral ICA stenosis during resting state and during metronomic 221 

breathing at .1 Hz. Directed functional connectivity was analyzed as the dependent variable in linear 222 

mixed models with a random slope allowing for varying effects of direction (distinguishing between 223 

influences in rostral-to-caudal and caudal-to-rostral direction) for each pair of homologues connections 224 

(cf. Fig. 1). Additionally a random intercept for participant was included in each model. The fixed 225 

effects structure is described for each model in the following. An overview of the applied statistical 226 

models is provided in Table 1. The predicted marginal means and corresponding confidence intervals 227 

for significant effects are provided in Supplementary Table S1. 228 

Metronomic breathing increases blood pressure oscillations and overall connectivity strength 229 

As manipulation check, a one-sample t-test comparing the peak power spectral density (PSD) of the 230 

continuous aBP measurement in the frequency band between .06 and .12 Hz confirmed that the 231 

metronomic breathing induced strong aBP oscillations compared to the resting state (mean difference: 232 

6.1 dB; t(12) = 5.1; p = .0003; Fig. 2, also see Fig. 5 for fNIRS and aBP PSD spectra). 233 

F2 234 

 

Figure 2: The low-frequency power spectral density (PSD) of the arterial blood pressure (aBP) was 235 
strongly increased during metronomic breathing compared to resting state. Bars represent group means; 236 
error bars indicate 95 % confidence intervals; p-value refers to a one-sample two-tailed t-test. 237 

The first analysis of directed functional connectivity addressed the hypothesis that the impaired 238 

cerebral vasomotor reactvity in the hemisphere affected by ICA stenosis would specifically attenuate 239 

the rostro-caudal gradient, while the functional gradient was expected to be generally robust against 240 

increased aBP oscillations induced by metronomic breathing. To this end, we fitted a linear mixed 241 

model (Model 1) with a fixed effects structure comprising the three-way interaction (and all main 242 

effects and lower-order interactions) between direction (rostro-caudal vs. caudo-rostral), hemisphere 243 
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(affected vs. healthy) and condition (resting state vs. metronomic breathing). The main effect for 244 

direction confirmed the predominance of rostro-caudally directed influences (F(1,12) = 14.6, p = .002) 245 

with higher DC estimates between adjacent fNIRS channels in rostro-caudal than in caudo-rostral 246 

direction. A strong main effect for condition (F(1,1212) = 61.0, p < .0001) indicated that deep 247 

breathing led to an overall increase in connectivity strength. The two-way interaction between 248 

direction and hemisphere (F(1,1212) = 12.2, p = .0005) further indicated that ICA stenosis attenuates 249 

the rostro-caudal gradient. However, the significant three-way interaction between direction, 250 

hemisphere, and condition (F(1,1212) = 4.5, p = .034) revealed that the impact of breathing-induced 251 

aBP oscillations on the rostro-caudal gradient was different between hemispheres (Fig. 3): The 252 

difference between the directions of influences in the healthy hemisphere was larger during 253 

metronomic breathing than during rest (p = .040) while there was no significant difference in 254 

directionality between conditions in the affected hemisphere (p = .349). Neither the main effect for 255 

hemisphere (p = .642), nor the other two-way interactions were significant (all p > .424). Taken 256 

together, the rostro-caudal gradient in the PFC was significantly increased in the healthy hemisphere 257 

by metronomic breathing while it was stable in the hemisphere affected by ICA stenosis.  258 
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F3 259 

 

Figure 3: The rostro-caudal gradient in the healthy hemisphere is increased by metronomic breathing. A: 260 
Metronomic breathing led to an overall increase of connectivity. Moreover, rostro-caudally directed influences in 261 
the healthy hemisphere increased over-proportionally during metronomic breathing (Model 1). As shown in 262 
Figure 4, this difference between conditions disappeared after intra-individually adjusting the estimation of 263 
directed connectivity for aBP oscillations, whereas the difference between the healthy and affected hemisphere 264 
was preserved. N = 13; bars represent least square means; error bars indicate 95 % confidence intervals. B: 265 
Topographic illustration of the connectivity estimates, representing the influences from channels (black dots) 266 
toward caudally (left brain) and rostrally (right brain) neighboring channels as indicated by arrows; darker red 267 
colors signify stronger influences. Data for patients with stenosis of the right ICA were flipped such that the 268 
affected side is represented on the left hemisphere. 269 

Adjusting estimates of directed connectivity for arterial blood pressure oscillations (intra-270 

individual approach) 271 

As metronomic breathing not only caused a marked increase in overall connectivity strength but also 272 

changed the rostro-caudal gradient in the healthy hemisphere we sought to intra-individually control 273 

for the potentially underlying mediation effect of aBP oscillations in a second analysis. To this end, we 274 

calculated the trivariate – i.e. partial – DC (PDC) between each fNIRS channel pair and the continuous 275 

aBP time series at the level of the individual subject, thereby removing estimated influences between 276 

brain regions that were mediated by aBP oscillations. The linear mixed model with the factors 277 

direction, hemisphere, and condition (as specified above) was fitted to these aBP-corrected 278 
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connectivity estimates (Model 2) and demonstrated that changes induced by metronomic breathing 279 

were entirely mediated by aBP oscillations: Neither the main effect for condition (p = .377), nor any 280 

interaction involving condition was significant in the model fitted to the aBP-corrected data (all p > 281 

.354; see Table 1). However, main effects for direction (F(1,12) = 19.8, p = .0007) and hemisphere 282 

(F(1,1223) = 4.0, p = .044) as well as their interaction (F(1,1223) = 14.5, p = .0001) were significant. 283 

Thus, intra-individually adjusting for effects of aBP oscillations not only allowed to correct breathing 284 

induced artificial increases in the magnitudes of estimates of directed connectivity, but also revealed 285 

that the connectivity gradient in the stenosed compared to the healthy hemisphere was generally 286 

attenuated irrespective of the condition (breathing vs. rest). 287 

In order to explicitly test the effects of correcting the connectivity for aBP oscillations, supplementary 288 

analyses directly compared the uncorrected DC estimates and the aBP-corrected PDC estimates 289 

(Supplementary Model S6 and S7). These analyses confirmed that (i) the general over-estimation of 290 

connectivity strength in both hemispheres and (ii) the increased rostro-caudal gradient in the healthy 291 

hemisphere caused by metronomic breathing disappeared after correcting for aBP oscillations. 292 
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F4 293 

 

Fig 4: Including the aBP time series in the connectivity estimation entirely removed the effect of 294 
metronomic breathing on the rostro-caudal connectivity. A: The effect that metronomic breathing exerted on 295 
the connectivity estimates was adjusted by including the aBP time series into the VAR model. This correction 296 
preserved the difference between hemispheres and revealed that the attenuation of the rostro-caudal gradient by 297 
ICA stenosis was independent of aBP fluctuations but reflected the compromised integrity of the functional 298 
network. P-values were obtained by fitting Model 1 (Figure 3) to the aBP-corrected connectivity estimates 299 
(Model 2). N = 13; bars represent least square means; error bars indicate 95 % confidence intervals. B: 300 
Topographic illustration of the aBP-corrected connectivity estimates, representing the influences from channels 301 
(black dots) toward caudally (left brain) and rostrally (right brain) neighboring channels as indicated by arrows; 302 
darker red colors signify stronger influences. Data for patients with stenosis of the right ICA were flipped such 303 
that the affected side is represented on the left hemisphere. 304 

Although the CBSI method used in the present analyses to improve signal quality is an established 305 

method that has been validated and compared to other artifact correction methods multiple times (e.g. 306 

Cooper et al. 2012; Brigadoi et al. 2014; Racz et al. 2017; Mukli et al. 2018; Fairclough et al. 2018; 307 

Fishburn et al. 2019), a systematic analysis of the impact of the CBSI method on Granger causality 308 

inference has not been performed yet. We therefore conducted control analyses on the uncorrected 309 

deoxygenated (dxyHb) and oxygenated (oxyHb) hemoglobin data (Supplementary Model S2-S5). The 310 

resulting connectivity estimates are depicted in Supplementary Figure S1 (DC) and S2 (PDC, 311 

corrected for influences by aBP fluctuations). In brief, the pattern of DC estimates, derived from the 312 
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oxyHb data markedly deviated from those derived from the CBSI data, while the dxyHb-derived 313 

connectivity pattern was similar to the CBSI-derived pattern. Furthermore, the PDC estimates (i.e. the 314 

connectivity corrected for aBP influences) were similar for the oxyHb, dxyHb, and CBSI data 315 

suggesting that the deviating results for the oxyHb-derived DC estimates were due to the higher 316 

susceptibility of the oxyHb measurement to physiological noise as previously reported (Obrig et al. 317 

2000; Zhang et al. 2009; Kirilina et al. 2012; Sutoko et al. 2019). This again corroborates our finding that 318 

including the aBP signal in PDC estimation effectively controlled for bias induced by physiological 319 

noise. 320 

Low-frequency aBP variance is reflected in low-frequency fNIRS variance 321 

The strong intra-individual effect of including peripheral measured aBP oscillations in the PDC 322 

estimation of the directed functional connectivity raises the question whether the magnitude of the aBP 323 

oscillations is reflected in the low-frequency component of the fNIRS signal. Correlations between the 324 

peak power spectral density (PSD, in dB) of the peripheral aBP and the fNIRS signals in the frequency 325 

band between .06 and .12 Hz (Fig. 5a) revealed strong associations between the low-frequency 326 

variance of the aBP and the fNIRS signals across patients (Fig. 5b). The spatial distribution of 327 

correlation coefficients (Fig. 6b) indicated considerable variation across hemispheres and conditions. 328 

A 2×2 repeated measures analysis of variance (ANOVA; performed using the ez package for R, 329 

version 4.4-0; Lawrence, 2016) on the fisher-transformed Pearson correlation coefficients (Model 3, 330 

calculated with the homologous channels as the unit of observation) showed that correlations were 331 

stronger in the affected than in the healthy hemisphere (F(1,15) = 11.63, p = .004, generalized η² = 332 

.194; Fig. 6a). Furthermore, the significant interaction effect between hemisphere and condition 333 

(F(1,15) = 13.40, p = .002, generalized η² = .043) revealed that the correlation difference between 334 

conditions was mainly driven by elevated PSD correlations in the healthy hemisphere during 335 

metronomic breathing compared to resting state (mean difference: .122, t(15) = 1.72, p = .11); the 336 

difference between conditions in the affected hemisphere was considerably smaller (mean difference: 337 

.035, t(15) = .568, p = .58). These effects clearly demonstrate the impairment of the vasomotor 338 

reactivity in the stenosed hemisphere (where aBP fluctuations appeared almost undamped), not only 339 

during metronomic breathing but also during rest. Averaged across channels and conditions, the low-340 
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frequency PSD of the fNIRS signal shared 23% of variance with the low-frequency PSD of the 341 

peripheral aBP (Fig. 5b). 342 

F5 343 

 

Fig. 5: The power spectral density (PSD) of the fNIRS signal and the continuously measured aBP. A: PSD 344 
of the fNIRS (solid line) and the aBP (dashed line) signals during resting state (top panels) and metronomic 345 
breathing (bottom panels) separately for the healthy and the stenosed hemisphere. The aBP was measured by a 346 
finger plethysmograph and its PSD is shown twice along with the fNIRS PSD for both hemispheres to facilitate 347 
comparison. The fNIRS PSDs were averaged across channels within each hemisphere; lines represent averages 348 
across patients and gray patches indicate standard deviations across patients. The area shaded in light gray marks 349 
the frequency band between .06 and .12 Hz which was used for analyses. B: Scatter plot of aBP and fNIRS 350 
PSDs. From each PSD spectrum the maximum in the frequency band of interest was used. The fNIRS PSD 351 
values were averaged across channels included in the mixed model analyses. The correlations between PSDs for 352 
single fNIRS channels are shown topographically in Figure 6b. 353 
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F6 354 

 

Fig 6: The coupling between low-frequency aBP and fNIRS signal variance in the healthy hemisphere is 355 
increased by metronomic breathing. A: The correlations between the peak PSD in the frequency band [.06 356 
.12] Hz of the aBP and each fNIRS channel were calculated, Fisher-Z-transformed, and analyzed in a repeated 357 
measures ANOVA (Model 3). In the resting state the impairment of the vasomotor reactivity by the ICA stenosis 358 
caused high correlations between aBP and fNIRS PSDs in the affected hemisphere, which were not further 359 
increased by metronomic breathing. In contrast, the vasculature of the healthy hemisphere with its intact 360 
autoregulation minimized PSD correlations in the resting state. However, metronomic breathing induced strong 361 
aBP oscillations also in the healthy hemisphere which lead to a marked increase in PSD correlations. Taken 362 
together, coupling between aBP and fNIRS signal variance increased by metronomic breathing in the healthy but 363 
not in the stenosed hemisphere. N = 13; bars represent mean correlation coefficients; error bars indicate standard 364 
error of the mean. B: Topographic illustration of correlation coefficients. Black dots mark channels for which 365 
correlation was significant (p < .05, uncorrected). For the sake of completeness, this figure shows correlations 366 
for all fNIRS channels, i.e. also for those not included in the connectivity analyses, while the ANOVA 367 
considered only channels that contributed to at least one connection (cf. Fig. 1). Data for patients with stenosis of 368 
the right ICA were flipped such that the affected side is represented on the left hemisphere. 369 

Low-frequency fNIRS-variance accounts for the effect of metronomic breathing (inter-370 

individual approach) 371 

Given the strong association between the low-frequency variation in the aBP and the fNIRS signals 372 

across patients, we further asked whether the fNIRS PSD can serve as a proxy for the intra-individual 373 

aBP fluctuations in order to explain the effect of breathing on estimates of directed connectivity on the 374 

inter-individual level. As this could provide a general possibility to correct the connectivity estimates 375 

for the aBP induced bias without relying on monitoring the peripheral aBP time course, we tested 376 

whether the low-frequency fNIRS PSD can account for aBP-induced variance in the connectivity 377 

estimates. Accordingly, the first model (using the uncorrected connectivity estimates) was extended by 378 

the peak PSD of the fNIRS signals in the frequency band between .06 and .12 Hz as a covariate, 379 

including all resulting 2-, 3- and 4-way interactions with the nominal predictors (Model 4). As there is 380 
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one peak PSD value for each fNIRS channel, we used the mean value of the respective channel pairs 381 

for the corresponding connections. In addition to main effects for direction (F(1,28.0) = 4.5, p = .042) 382 

and condition (F(1,1028) = 6.2, p = .013), this model revealed a simple effect of the continuous 383 

predictor low-frequency PSD (F(1,224.8) = 6.2, p = .014). As expected, the 2-way interaction between 384 

direction and hemisphere (F(1,1207.1) = 1.4, p = .234) and, more importantly, the 3-way interaction 385 

between direction, hemisphere, and condition (F(1,1205.9) = .9, p = .340) disappeared. Instead, the 386 

significant 3-way interaction between direction, hemisphere, and low-frequency PSD (F(1,1207.3) = 387 

7.8, p = .005) revealed a positive correlation between the rostro-caudal gradient and the variance in the 388 

low-frequency fNIRS signal component in the healthy hemisphere only (Fig. 7, left panel; contrast 389 

between slopes for low-frequency PSD of rostrally and caudally directed influences in the healthy 390 

hemisphere: p = .008). In the affected hemisphere, low-frequency PSD did not predict the difference 391 

between rostrally and caudally directed influences (p = .239). Thus, the low-frequency variance of the 392 

fNIRS signal (i) moderated the effect of hemisphere (i.e. of the ICA stenosis) on the rostro-caudal 393 

gradient and (ii) mediated the effect of condition (i.e. of aBP oscillations) on the gradient in the 394 

healthy hemisphere. No further effects were significant (all p > .198). 395 

F7 396 

 

Fig 7: The fNIRS signal power explained variance in the connectivity estimates in the healthy hemisphere. 397 
The low-frequency power spectral density (PSD) of the fNIRS signals mediated the effect of condition on the 398 
rostro-caudal gradient, i.e. the effect of condition (Fig. 3) disappeared after including the fNIRS PSD as a 399 
predictor in the linear mixed model (Model 4). N = 13; model predictions are shown with 95% non-simultaneous 400 
confidence bands.  401 
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T1 402 

Table 1: Type III statistics for second-level models 403 
Model (Figures) Effect df Error df F value p value 
Model 1 
DC LMM 
(Figure 3) 

direction 1 12 14.57 .0025 
condition 1 1212 60.97 1 × 10-14 
hemisphere 1 1212 .22 .6419 
direction × condition 1 1212 .63 .4292 
direction × hemisphere 1 1212 12.20 .0005 
condition × hemisphere 1 1212 .64 .4250 
direction × condition × hemisphere 1 1212 4.48 .0345 

Model 2 
PDC LMM 
(aBP corrected 
connectivity; 
Figure 4) 

direction 1 12 19.79 .0008 
condition 1 1223 .78 .3767 
hemisphere 1 1223 4.05 .0444 
direction × condition 1 1223 .86 .3537 
direction × hemisphere 1 1223 14.49 .0001 
condition × hemisphere 1 1223 .79 .3741 
direction × condition × hemisphere 1 1223 .14 .7117 

Model 3 
ANOVA of PSD 
correlations (Figure 6) 

condition 1 15 .47 .5027 
hemisphere 1 15 11.63 .0039 
condition × hemisphere 1 15 13.40 .0023 

Model 4 
DC LMM with fNIRS 
PSD covariate 
(Figure 7) 

dir 1 28 4.54 .0419 
condition 1 1028 6.17 .0132 
hemisphere 1 1230 .00 .9591 
PSDfNIRS 1 225 6.16 .0138 
direction × condition 1 1206 .21 .6451 
direction × hemisphere 1 1207 1.41 .2345 
condition × hemisphere 1 1225 1.40 .2369 
direction × PSDfNIRS 1 1211 1.66 .1982 
condition × PSDfNIRS 1 1040 .05 .8242 
hemisphere × PSDfNIRS 1 1233 .06 .8047 
direction × condition × hemisphere 1 1206 .91 .3402 
direction × condition × PSDfNIRS 1 1207 .47 .4933 
direction × hemisphere × PSDfNIRS 1 1207 7.83 .0052 
condition × hemisphere × PSDfNIRS 1 1228 .86 .3544 
direction × condition × hemisphere × PSDfNIRS 1 1206 .32 .5746 

NB: Tests of linear mixed models (LMM) were performed using the lmerTest package (Kuznetsova et al. 2016), 404 
with Satterthwaite approximation of degrees of freedom. Abbreviations: ANOVA, analysis of variance; DC, 405 
directed coherence; df, degrees of freedom; LMM, linear mixed model; PDC, partial directed coherence; PSD, 406 
power spectral density (in the low frequency band). 407 

Discussion 408 

The present study addressed effects of physiological noise and vasomotor reactivity on Granger-causal 409 

cross-spectral analyses of multi-channel fNIRS data with high temporal resolution. Specifically, we 410 
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asked (i) whether physiological noise, which inevitably contaminates fNIRS measurements, biases 411 

Granger-causality estimates of directed connectivity along the rostro-caudal axis in the PFC, and (ii) 412 

whether severe carotid artery stenosis, which impairs the neurovascular coupling in the PFC (Rossini 413 

et al. 2004; Bokkers et al. 2010; Novak and Hajjar 2010; Hartkamp et al. 2012; Novak 2012) also 414 

affects the rostro-caudal hierarchical organization of the PFC. We found that the impact of strong aBP 415 

oscillations on the directed connectivity estimates was direction-unspecific and could be removed by 416 

including the aBP time course in the connectivity estimation. Additionally, the effect of aBP 417 

oscillations on the directed functional connectivity was explained by the low-frequency power of the 418 

fNIRS signal. Furthermore, results showed that the rostro-caudal functional organization of the PFC in 419 

the affected hemisphere was specifically attenuated by ICA stenosis. Taken together, Granger-causal 420 

cross-spectral analyses of resting-state fNIRS measurements were robust against ordinary levels of 421 

physiological noise but sensitive to the integrity of the neurovascular system. 422 

The enhancing effect of the breathing-induced fNIRS signal oscillations on the connectivity estimates 423 

demonstrated that the manipulation of this physiological parameter biased the estimation of directed 424 

connectivity. As it is very unlikely that this change in connectivity reflects a change in functional 425 

organization evoked by the instruction of metronomic breathing, the increased low-frequency signal 426 

variance (at .1 Hz) probably caused elevated estimates of functional connections. This interpretation is 427 

supported by three observations: (i) The increase in connectivity during metronomic breathing was 428 

more pronounced in the healthy compared to the stenosed hemisphere. As ICA stenosis caused a 429 

reduction of the vasomotor reactivity and impaired the cerebral autoregulation in the affected 430 

hemisphere (Bokkers et al. 2010; Reinhard et al. 2014), the vasculature had less capacity to 431 

compensate aBP fluctuations, presumably already in the resting state. Thus, the coupling between aBP 432 

and the fNIRS signal was increased by metronomic breathing only in the healthy but not in the 433 

stenosed hemisphere (Fig. 6) and, accordingly, exerted a stronger effect on estimates of directed 434 

connectivity in the healthy than in the stenosed hemisphere. (ii) The effect of breathing-induced 435 

increases of directed connectivity completely disappeared after including the aBP signal (the 436 

continuous finger photoplethysmogram measurements) in the intra-individual connectivity estimation. 437 

The change in connectivity between resting and breathing condition was thus entirely explained by 438 
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systemic aBP fluctuations (i.e. non-neural signal variance). (iii) Besides the peripheral, global 439 

hemodynamic signal, the local, low-frequency power spectral density of the fNIRS time series also 440 

reflected the effect of metronomic breathing on the connectivity, i.e. the low-frequency power spectral 441 

density accounted for the difference between conditions. The fact that the connectivity gradient was 442 

predicted by the low-frequency signal variance only in the healthy and not in the affected hemisphere 443 

indicates that strong vasomotion can bias the Granger-causal estimates of directed connectivity. Taken 444 

together, we conclude that the impact of peripheral physiological parameters, notably aBP oscillations, 445 

on Granger-causality inference can be adjusted by taking inter-individual differences in fNIRS signal 446 

variance into account. However, when comparing connectivity estimated from measurements under 447 

conditions with considerable variations in aBP, the present results advise to include the aBP time 448 

series in the intra-individual connectivity estimation in order to preclude that differences in 449 

connectivity are caused simply by autoregulatory vasomotion. In this respect, it is worth noting that 450 

peripheral photoplethysmography used to measure slow aBP fluctuations in the present study also 451 

capture cardiac and respiratory pulsations, which have been shown to constitute noise sources in 452 

functional hemodynamic measurements as well (Frederick et al. 2012). Thus, improvement of 453 

connectivity estimates by including the aBP time-series in the VAR model may have also relied on the 454 

suppression of other systemic physiological noise sources.  455 

In contrast to the effect of metronomic breathing, the effect of ICA stenosis on the connectivity 456 

estimates was persistent after correcting for the global hemodynamic component as well as after taking 457 

the local signal variance into account. The difference in connectivity between healthy and affected 458 

hemisphere therefore reflected the integrity of the functional network organization rather than mere 459 

physiological processes. This finding was highly expected as ICA stenosis has been shown before not 460 

only to impair the hemodynamic response (Rossini et al. 2004) and functional connectivity (Avirame 461 

et al. 2015) but also to cause functional deficits like cognitive decline (Novak and Hajjar 2010; Novak 462 

2012). However, as no behavioral data were available for the present sample of patients, the 463 

relationship between alterations in the rostro-caudal connectivity gradient and specific cognitive 464 

function requires further research. Moreover, future studies should take advantage of more recent 465 

advancements in fNIRS technology and, specifically, capitalize on multi-distance and tomographic 466 
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measurements to more efficiently eliminate extra-cerebral signal components (Habermehl et al. 2012; 467 

Eggebrecht et al. 2014; Gagnon et al. 2014; Sato et al. 2016). 468 

In summary, the high temporal resolution of fNIRS renders Granger-causality analyses of 469 

hemodynamic measurements possible and allows the comparison of different conditions provided that 470 

physiological parameters like aBP are controlled. In line with previous studies we demonstrated that 471 

(i) peripheral measurements of systemic hemodynamic processes can be used to correct functional 472 

connectivity estimates for physiological noise (Frederick et al. 2012; Tong et al. 2013; Sutoko et al. 473 

2019) and that (ii) ICA stenosis impairs functional network organization (Avirame et al. 2015). 474 
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